Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (7): 94-101    DOI: 10.13523/j.cb.20180713
综述     
CRISPR-dCas9调控基因转录的研究进展 *
田开仁1,2,3,薛二淑1,2,3,宋倩倩1,2,3,乔建军1,2,3,李艳妮1,2,**()
1 天津大学化工学院 天津 300072
2 系统生物工程教育部重点实验室 天津 300072
3 天津化学化工协同创新中心合成生物学平台 天津 300072
The Research Progress of CRISPR-dCas9 in Transcriptional Regulation
Kai-ren TIAN1,2,3,Er-shu XUE1,2,3,Qian-qian SONG1,2,3,Jian-jun QIAO1,2,3,Yan-ni LI1,2,**()
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
3 Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
 全文: PDF(785 KB)   HTML
摘要:

CRISPR/Cas9系统已不仅仅是一种革命性的基因编辑工具,还能在各种原核和真核生物中调控基因转录。近年来,由CRISPR/Cas9衍生而来的CRISPR-dCas9系统已被用于基因成像、高通量筛选、基因调控、必需基因功能研究及表观遗传调控等多个方向。总结了近年来CRISPR-dCas9系统在激活或抑制基因转录、降低脱靶效率、sgRNA与转录强度及特异性之间的联系等方面的研究进展,以期对CRISPR-dCas9系统定向调控基因转录的研究提供参考和帮助,并就其未来可能的改进进行了展望。

关键词: CRISPR-dCas9基因调控转录激活转录抑制    
Abstract:

The CRISPR/Cas9 system is not only a revolutionary tool for gene editing but also regulates gene transcription in various prokaryotic and eukaryotic organisms. In recent years,the system of CRISPR-dCas9 derived from CRISPR/Cas9 has been used in many fields such as gene imaging, high-throughput screening, gene regulation, investigating essential gene function and epigenetic regulation.The recent advances of CRISPR-dCas9 for activating or inhibiting gene transcription, reducing off-targeting efficiency and combing the intrinsic relationship between sgRNA and transcriptional regulation, application in the life science and further upgrading were described.

Key words: CRISPR-dCas9    Transcriptional regulation    Transcriptional activation    Transcriptional inhibition
收稿日期: 2018-03-15 出版日期: 2018-08-13
ZTFLH:  Q789  
基金资助: 国家自然科学基金(31570089)
通讯作者: 李艳妮     E-mail: liyanni@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田开仁
薛二淑
宋倩倩
乔建军
李艳妮

引用本文:

田开仁,薛二淑,宋倩倩,乔建军,李艳妮. CRISPR-dCas9调控基因转录的研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 94-101.

Kai-ren TIAN,Er-shu XUE,Qian-qian SONG,Jian-jun QIAO,Yan-ni LI. The Research Progress of CRISPR-dCas9 in Transcriptional Regulation. China Biotechnology, 2018, 38(7): 94-101.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180713        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I7/94

图1  CRISPRa系统的作用机制及不同类型的CRISPRa系统
图2  CRISPRi系统作用机制及不同类型的CRISPRi抑制系统
[1] Gasiunas G, Barrangou R, Horvath P , et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(39):E2579-2586.
doi: 10.1073/pnas.1208507109
[2] Jinek M, Chylinski K, Fonfara I , et al. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[3] Westra E R, van Erp P B, Kunne T , et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Molecular Cell, 2012,46(5):595-605.
doi: 10.1016/j.molcel.2012.03.018
[4] Hsu P D, Scott D A, Weinstein J A , et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013,31(9):827-832.
doi: 10.1038/nbt.2647 pmid: 23873081
[5] Hwang W Y, Fu Y, Reyon D , et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013,31(3):227-229.
doi: 10.1038/nbt.2501 pmid: 23360964
[6] Jiang W, Bikard D, Cox D , et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013,31(3):233-239.
doi: 10.1038/nbt.2508 pmid: 23360965
[7] Qi L S, Larson M H, Gilbert L A , et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013,152(5):1173-1183.
doi: 10.1016/j.cell.2013.02.022 pmid: 3664290
[8] Mali P, Aach J, Stranges P B , et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 2013,31(9):833-838.
doi: 10.1038/nbt.2675
[9] Dove S L, Hochschild A . Conversion of the omiga subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes & Development, 1998,12(5):745-754.
[10] Bikard D, Jiang W, Samai P , et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 2013,41(15):7429-7437.
doi: 10.1093/nar/gkt520
[11] Yu L, Su W, Fey P D , et al. Yield improvement of the anti-MRSA antibiotics WAP-8294A by CRISPR/dCas9 combined with refactoring self-protection genes in Lysobacter enzymogenes OH11. ACS Synthetic Biology, 2018,7(1):258-266.
doi: 10.1021/acssynbio.7b00293
[12] Maeder M L, Linder S J, Cascio V M , et al. CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 2013,10(10):977-979.
doi: 10.1038/nmeth.2598
[13] Polstein L R, Gersbach C A . A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nature Chemical Biology, 2015,11(3):198-200.
doi: 10.1038/nchembio.1753 pmid: 25664691
[14] Zetsche B, Volz S E, Zhang F . A split-Cas9 architecture for inducible genome editing and transcription modulation. Nature Biotechnology, 2015,33(2):139-142.
doi: 10.1038/nbt.3149 pmid: 4503468
[15] Gilbert L A, Larson M H, Morsut L , et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013,154(2):442-451.
doi: 10.1016/j.cell.2013.06.044 pmid: 23849981
[16] Kearns N Ac , Genga R M J, Enuameh M S, et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development, 2014,141(1):219-223.
doi: 10.1242/dev.103341
[17] Tanenbaum M E, Gilbert L A, Qi L S , et al. A Protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 2014,159(3):635-646.
doi: 10.1016/j.cell.2014.09.039 pmid: 4252608
[18] Chavez A, Scheiman J, Vora S , et al. Highly efficient Cas9-mediated transcriptional programming. Nature Methods, 2015,12(4):326-328.
doi: 10.1038/nmeth.3312 pmid: 4393883
[19] Konermann S, Brigham M D, Trevino A E , et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015,517(7536):583-588.
doi: 10.1038/nature14136 pmid: 4420636
[20] Peabody D S . The RNA binding size of bacteriophage MS2 coat protein. EMBO Journal, 1993,12(2):595-600.
doi: 10.1002/j.1460-2075.1993.tb05691.x pmid: 8440248
[21] Hilton I B , D’Ippolito A M, Vockley C M, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 2015,33(5):510-517.
doi: 10.1038/nbt.3199
[22] Thakore P I, Black J B, Hilton I B , et al. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nature Methods, 2016,13(2):127-137.
doi: 10.1038/nmeth.3733
[23] Komor A C, Badran A H, Liu D R . CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017,168(1-2):20-36.
doi: 10.1016/j.cell.2016.10.044 pmid: 27866654
[24] Dominguez A A, Lim W A, Qi L S . Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 2015,17(1):5-15.
doi: 10.1038/nrm.2015.2 pmid: 26670017
[25] Larson M H, Gilbert L A, Wang X , et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2013,8(11):2180-2196.
doi: 10.1038/nprot.2013.132 pmid: 24136345
[26] Piatek A, Ali Z, Baazim H , et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnology Journal, 2015,13(4):578-589.
doi: 10.1111/pbi.12284
[27] Choudhary E, Thakur P, Pareek M , et al. Gene silencing by CRISPR interference in mycobacteria. Nature Communications, 2015,6:6267-6277.
doi: 10.1038/ncomms7267 pmid: 25711368
[28] Smith J D, Suresh S, Schlecht U , et al. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biology, 2016,17:45-56.
doi: 10.1186/s13059-016-0900-9
[29] Singh A K, Carette X, Potluri L P , et al. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Research, 2016,44(18):e143.
doi: 10.1093/nar/gkw625
[30] Wang Y, Zhang Z T, Seo S O , et al. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9. Biotechnology and Bioengineering, 2016,113(12):2739-2743.
doi: 10.1002/bit.26020 pmid: 27240718
[31] Yao L, Cengic I, Anfelt J , et al. Multiple gene repression in cyanobacteria using CRISPRi. ACS Synthetic Biology, 2016,5(3):207-212.
doi: 10.1021/acssynbio.5b00264 pmid: 26689101
[32] Konermann S, Brigham M D, Trevino A E , et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature, 2013,500(7463):472-476.
doi: 10.1038/nature12466 pmid: 23877069
[33] Gilbert L A, Horlbeck M A, Adamson B , et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014,159(3):647-661.
doi: 10.1016/j.cell.2014.09.029 pmid: 25307932
[34] Thakore P I , D’Ippolito A M, Song L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods, 2015,12(12):1143-1149.
doi: 10.1038/nmeth.3630
[35] Kearns N A, Pham H, Tabak B , et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nature Methods, 2015,12(5):401-403.
doi: 10.1038/nmeth.3325 pmid: 25775043
[36] Ran F A, Hsu P D, Lin C Y , et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013,154(6):1380-1389.
doi: 10.1016/j.cell.2013.08.021
[37] Huang H, Zheng G, Jiang W , et al. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochimica et Biophysica Sinica, 2015,47(4):231-243.
doi: 10.1093/abbs/gmv007 pmid: 25739462
[38] Polstein L R, Perez-Pinera P, Kocak D D , et al. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Research, 2015,25(8):1158-1169.
doi: 10.1101/gr.179044.114
[39] Xu H, Xiao T, Chen C H , et al. Sequence determinants of improved CRISPR sgRNA design. Genome Research, 2015,25(8):1147-1157.
doi: 10.1101/gr.191452.115 pmid: 26063738
[40] Martinko A J, Truillet C, Julien O , et al. Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface proteins. eLife, 2018,7:e31098.
[41] Doench J G, Hartenian E, Graham D B , et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology, 2014,32(12):1262-1267.
doi: 10.1038/nbt.3026 pmid: 4262738
[42] Wong N, Liu W, Wang X . WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biology, 2015,16(1) : 218-225.
doi: 10.1186/s13059-015-0784-0 pmid: 4629399
[43] Radzisheuskaya A, Shlyueva D, Müller I , et al. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Research, 2016,44(18):e141.
doi: 10.1093/nar/gkw583
[44] Liao H K, Hatanaka F, Araoka T , et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell, 2017,171(7):1495-1507.
doi: 10.1016/j.cell.2017.10.025
[45] Black J B, Adler A F, Wang H G , et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell, 2016,19(3):406-414.
doi: 10.1016/j.stem.2016.07.001
[46] Zhang Y, Yin C, Zhang T , et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Scientific Reports, 2015,5:16277-16290.
doi: 10.1038/srep16277
[47] Limsirichai P, Gaj T, Schaffer D V . CRISPR-mediated activation of latent HIV-1 expression. Molecular Therapy, 2016,24(3):499-507.
doi: 10.1038/mt.2015.213 pmid: 26607397
[48] Sun S, Xiao J, Huo J , et al. Targeting ectodysplasin promotor by CRISPR/dCas9-effector effectively induces the reprogramming of human bone marrow-derived mesenchymal stem cells into sweat gland-like cells. Stem Cell Research & Therapy, 2018,9(1):8-17.
[49] Gallego-Bartolomé J, Gardiner J, Liu W , et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences of the United States of America. 2018,115(9):E2125-E2134.
doi: 10.1073/pnas.1716945115 pmid: 29444862
[50] Peters J M, Colavin A, Shi H , et al. A comprehensive, CRISPR-based functional analysis of essential genes in Bacteria. Cell, 2016,165(6):1493-506.
doi: 10.1016/j.cell.2016.05.003 pmid: 4894308
[51] Dong X, Jin Y, Ming D , et al. CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus. Journal of Microbiological Methods. 2017,139:79-86.
[52] Liu S J, Horlbeck M A, Cho S W , et al. CRISPRi-based genome-scale identification of functional long non-coding RNA loci in human cells. Science, 2017, 355(6320): aah7111.
doi: 10.1126/science.aah7111 pmid: 27980086
[53] Lv L, Ren Y L, Chen J C , et al. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metabolic Engineering, 2015,29:160-168.
doi: 10.1016/j.ymben.2015.03.013
[54] Wang J, Zhao P, Li Y , et al. Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis. Microbial Cell Factories, 2018,17(1):56-67.
doi: 10.1186/s12934-018-0903-1
[55] Evers B, Jastrzebski K, Heijmans J P , et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nature Biotechnology, 2016,34(6):631-633.
doi: 10.1038/nbt.3536 pmid: 27111720
[56] Burstein D, Harrington L B, Strutt S C , et al. New CRISPR-Cas systems from uncultivated microbes. Nature, 2016,542(7640):237-241.
doi: 10.1038/nature21059 pmid: 5300952
[57] Hu J H, Miller S M, Geurts M H , et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556(7699):57-63.
doi: 10.1038/nature26155 pmid: 29512652
[1] 邱浩,汪铭书,程安春. γPNA一种新型高效的肽核酸[J]. 中国生物工程杂志, 2018, 38(2): 75-81.
[2] 曹锡梅, 罗旭光, 梁俊红, 张潮, 白丽娟, 郭大玮. 利用ChIP技术研究SAF基因编码区组蛋白修饰变化[J]. 中国生物工程杂志, 2015, 35(3): 8-17.
[3] 张巧娟, 张艳琼, 柳长柏. 类转录激活样因子效应物核酸酶技术的原理及应用[J]. 中国生物工程杂志, 2014, 34(7): 76-80.
[4] 杨发誉, 葛香连, 谷峰. 新型靶向基因组编辑技术研究进展[J]. 中国生物工程杂志, 2014, 34(2): 98-103.
[5] 王佳稳, 冯婧娴, 林俊生, 刁勇. 技术与方法适体核酶型人工核糖开关的设计[J]. 中国生物工程杂志, 2014, 34(2): 59-64.
[6] 周露, 董春娟, 刘进元. 人工microRNA干扰DREB亚族A-5组转录抑制子基因增强了拟南芥对低温和高盐胁迫的耐受性[J]. 中国生物工程杂志, 2011, 31(5): 34-41.
[7] 董园园, 李海燕, 李校堃, 杨树林. microRNA分子表达与调控研究的最新进展[J]. 中国生物工程杂志, 2011, 31(12): 109-114.
[8] 周露 董春娟 刘进元. 针对DREB亚族A-5组转录抑制子的人工microRNA的构建[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[9] 朱凯川, 张建华, 刘士德. 酵母转录因子Gal4研究进展[J]. 中国生物工程杂志, 2011, 31(01): 81-85.
[10] 朱先灿 宋凤斌. 植物菌根共生磷酸盐转运蛋白[J]. 中国生物工程杂志, 2009, 29(12): 108-113.
[11] 陈坚,薛绪潮,方国恩,苏长青,钱其军. RU486诱导调控载体的构建及体外表达[J]. 中国生物工程杂志, 2007, 27(6): 1-5.
[12] 贾彩凤, 李悦, 瞿超. 木本植物体细胞胚胎发生技术[J]. 中国生物工程杂志, 2004, 24(3): 26-29.
[13] 高波, 宋红芹, 陈芹, 李碧春, 孙怀昌, 王克华, 窦套存, 丁铲. 鸡输卵管特异表达载体的构建及其体内表达[J]. 中国生物工程杂志, 2003, 23(8): 83-86.
[14] 綦文涛, 修志龙. 甘油歧化生产1,3-丙二醇过程的代谢和基因调控机理研究进展[J]. 中国生物工程杂志, 2003, 23(2): 64-68.
[15] 刘巍峰, 秦玉静, 高东. 酵母杂交系统的发展及其应用[J]. 中国生物工程杂志, 2001, 21(1): 23-24.