Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (1): 103-113    DOI: 10.13523/j.cb.2009004
综述     
吡咯喹啉醌生物合成研究进展 *
王光路,王梦园,周忆菲,马科,张帆,杨雪鹏()
郑州轻工业大学食品与生物工程学院 食品生产与安全河南省协同创新中心 郑州 450001
Research Progress in Pyrrologuinoline Quinone Biosynthesis
WANG Guang-lu,WANG Meng-yuan,ZHOU Yi-fei,MA Ke,ZHANG Fan,YANG Xue-peng()
School of Food and Bioengineering, Collaborative Innovation Center of Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450001, China
 全文: PDF(36077 KB)   HTML
摘要:

吡咯喹啉醌(pyrroloquinoline quinone,PQQ)是一种多肽修饰类天然产物,是继烟酰胺和核黄素之后第三类辅酶,具有抗氧化、抗衰老、提高免疫力等重要生理功能,在医药、保健等领域具有重要价值。目前,PQQ的大规模制备仍然存在诸多问题,限制了PQQ的广泛应用。当前迫切需求低成本的合成方式,以充分实现其广阔的应用潜力。综述了近年来PQQ生物合成途径的解析、关键酶的催化反应机理以及高产菌株选育等方面的研究动态及发展趋势,并针对PQQ生物合成微生物细胞工厂构建研究策略提出了建议及展望。

关键词: 吡咯喹啉醌生物合成途径调控机制关键酶    
Abstract:

Pyrroloquinoline quinone (PQQ) is a ribosomally synthesized and post-translationally modified peptide that has been recognized as the third class of redox cofactors in addition to the well-known nicotinamides (NAD(P)+) and flavins (FAD, FMN). It is widely distributed in organisms and has physiological functions such as antioxidation. It has broad application prospects in the fields of medicine, food and cosmetics. However, the lack of an efficient microbial cell factory limits the industrial production efficiency of PQQ. In this paper, we reviewed the current research on the biosynthesis pathway of PQQ, the structures of key enzymes, as well as metabolic engineering strategies for the construction of high-yielding strains. These advances will provide a basis for finally achieving stable PQQ biosynthesis in microbial cell factories.

Key words: Pyrroloquinoline quinine    Biosynthesis pathway    Regulation mechanism    Key enzymes
收稿日期: 2020-09-03 出版日期: 2021-02-09
ZTFLH:  Q56  
基金资助: * 国家自然科学基金(U1904101);河南省科技攻关重点研发与推广专项(202102310021);河南省科技攻关重点研发与推广专项(182102310607)
通讯作者: 杨雪鹏     E-mail: yangxuepeng@zzuli.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王光路
王梦园
周忆菲
马科
张帆
杨雪鹏

引用本文:

王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.

WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis. China Biotechnology, 2021, 41(1): 103-113.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2009004        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I1/103

图1  PQQ的化学结构
图2  PQQ生物合成途径[14]
图3  PQQ碳骨架源于PqqA上谷氨酸和酪氨酸残基
图4  人工合成PqqA多肽三维结构
图5  PqqD协同PqqE在自由基反应中的催化作用
图6  PqqF/PqqG在PQQ合成发挥多肽水解作用[18]
图7  PqqB的Fe2+依赖的羟化反应[20]
图8  PqqC催化的反应: AHQQ的环化和八电子氧化
图9  M. extorquens AM1甲醇脱氢酶表达及PQQ合成的调控机制[36,37,38]
菌株 得率(mg/g) 产率[mg/(L·h)] 产量 (mg/L) 参考文献
Bacillus sp. 083114 - - 64.3 [40]
Methylopila sp. YHT-1 9 1.6 113.6 [41]
Methylovorus sp. strain MP68 - 0.9 125.0 [42]
Methylobacillus sp. zju323 105 2.2 162.2 [43]
Methylobacterium extorquens AM1 - - 54.0 [44]
Pseudomonas 0813 - - 425.7 [45]
Hyphomicrobium denitrificans FJNU-6 - 7.6 1 087.0 [46]
K. pneumoniae DSM 2026 - - 0.6 [50]
Gluconobacter oxydans 621H 0. 016 0.011 0.8 [54]
表1  吡咯喹啉醌筛选菌株生产性能分析
[1] Ouchi A, Nakano M, Nagaoka S, et al. Kinetic study of the antioxidant activity of pyrroloquinolinequinol [PQQH(2), a reduced form of pyrroloquinolinequinone] in micellar solution. Journal of Agricultural and Food Chemistry, 2009,57(2):450-456.
doi: 10.1021/jf802197d pmid: 19108686
[2] 朱欣杰, 程瑶. 吡咯喹啉醌的研究进展. 煤炭与化工, 2011,34(5):20-24.
Zhu X J, Cheng Y. Research progress of pyrroloquinoline-quinone. Coal and Chemical Industry, 2011,34(5):20-24.
[3] Rucker R, Storms D, Sheets A, et al. Biochemistry: is pyrroloquinoline quinone a vitamin. Nature, 2005,433(7025):E10-1.
doi: 10.1038/nature03323 pmid: 15689994
[4] 高晓嵘, 丁斐. 抗氧化剂在帕金森病治疗中的研究进展. 南通大学学报(医学版), 2011(3):192-195,199.
Gao X R, Ding F. Research progress of antioxidants in the treatment of Parkinson’s disease. Journal of Nantong University (Medical Sciences), 2011(3):192-195,199.
[5] 王歆, 汪建华, 刘党生, 等. 吡咯喹啉醌产生菌筛选方法建立及菌种筛选. 微生物学报, 2007(6):982-986.
Wang X, Wang J H, Liu D S, et al. Establishment of the screening method and isolation of PQQ producing strains. Acta Microbiologica Sinica, 2007(6):982-986.
[6] Akagawa M, Nakano M, Ikemoto K. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Bioscience Biotechnology and Biochemistry, 2016,80(1):13-22.
[7] 万慧. 氧化葡萄糖酸杆菌中吡咯喹啉醌转运与代谢过程的系统生物学研究. 无锡: 江南大学, 2016.
Wan H. Systematic biology study on the transport and metabolic process of pyrroloquinoline quinone in Gluconobacter oxidans. Wuxi: Jiangnan University, 2016.
[8] Ma K, Cui J Z, Ye J B, et al. Pyrroloquinoline quinone from Gluconobacter oxydans fermentation broth enhances superoxide anion-scavenging capacity of Cu/Zn-SOD. Food Chemistry, 2017,230:291-294.
doi: 10.1016/j.foodchem.2017.03.057 pmid: 28407913
[9] Dunbar K, Tietz J, Cox C L, et al. Identification of an auxiliary leader peptide-binding protein required for azoline formation in ribosomal natural products. Journal of the American Chemical Society, 2015,137(24):7672-7677.
[10] Shen Y Q, Bonnot F, Imsand E M, et al. Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry, 2012,51(11):2265-2275.
doi: 10.1021/bi201763d pmid: 22324760
[11] 周留柱. 鲍曼不动杆菌生物合成吡咯喹啉醌的研究. 郑州: 郑州轻工业大学, 2019.
Zhou L Z. The research on pyrroloquinoline quinone biosynthesis in Acinetobacter baumannii. Zhengzhou: Zhengzhou University of Light Industry, 2019.
[12] Yang X P, Zhong G F, Lin J P, et al. Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. Journal of Industrial Microbiology & Biotechnology, 2010,37(6):575-580.
doi: 10.1007/s10295-010-0703-z pmid: 20213113
[13] Saichana N, Tanizawa K, Pechousek J, et al. PqqE from Methylobacterium extorquens AM1: a radical S-adenosyl-l-methionine enzyme with an unusual tolerance to oxygen. The Journal of Biological Chemistry, 2016,159(1):87-99.
[14] Latham J, Barr I, Klinman J. At the confluence of ribosomally synthesized peptide modification and radical S-adenosylmethionine (SAM) enzymology. The Journal of Biological Chemistry, 2017,292(40):16397-16405.
[15] Klinman J, Bonnot F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chemical Reviews, 2014,114(8):4343-4365.
pmid: 24350630
[16] Barr I, Stich T, Gizzi A, et al. X-ray and EPR characterization of the auxiliary Fe-S clusters in the radical SAM enzyme PqqE. Biochemistry, 2018,57(8):1306-1315.
[17] Saichana N, Tanizawa K, Ueno H, et al. Characterization of auxiliary iron-sulfur clusters in a radical S-adenosylmethionine enzyme PqqE from Methylobacterium extorquens AM1. FEBS Open Bio, 2017,7(12):1864-1879.
doi: 10.1002/2211-5463.12314 pmid: 29226074
[18] Martins A, Latham J, Martel P, et al. A two-component protease in Methylorubrum extorquens with high activity toward the peptide precursor of the redox cofactor pyrroloquinoline quinone. The Journal of Biological Chemistry, 2019,294(41):15025-15036.
[19] Wei Q E, Ran T T, Ma C C, et al. Crystal structure and function of PqqF protein in the pyrroloquinoline quinone biosynthetic pathway. The Journal of Biological Chemistry, 2016,291(30):15575-15587.
pmid: 27231346
[20] Koehn E, Latham J, Armand T, et al. Discovery of hydroxylase activity for PqqB provides a missing link in the pyrroloquinoline quinone biosynthetic pathway. Journal of the American Chemical Society, 2019,141(10):4398-4405.
pmid: 30811189
[21] Latham J, Iavarone A, Barr I, et al. PqqD is a novel peptide chaperone that forms a ternary complex with the radical S-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. The Journal of Biological Chemistry, 2015,290(20):12908-12918.
pmid: 25817994
[22] Marchler A, Bo Y, Han L Y, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2017,45(D1):D200-D203.
[23] 李红月, 曾伟主, 周景文. 高产吡咯喹啉醌扭脱甲基杆菌的高通量选育. 生物工程学报, 2018,34(5):794-802.
Li H Y, Zeng W Z, Zhou J W. High-throughput screening of Methylobacterium extorquens for high production of pyrroloquinoline quinone. Chinese Journal of Biotechnology, 2018,34(5):794-802.
[24] Wang G L, Zhou Y F, Ma K, et al. Bioconversion of recombinantly produced precursor peptide pqqA into pyrroloquinoline quinone (PQQ) using a cell-free in vitro system. Protein Expression and Purification, 2021,178:105777.
pmid: 33069826
[25] Li L, Jiao Z W, Hale L, et al. Disruption of gene pqqA or pqqB reduces plant growth promotion activity and biocontrol of crown gall disease by Rahnella aquatilis HX2. PLoS One, 2014,9(12):e115010.
[26] Wecksler S, Stoll S, Tran H, et al. Pyrroloquinoline quinone biogenesis: demonstration that PqqE from Klebsiella pneumoniae is a radical S-adenosyl-L-methionine enzyme. Biochemistry, 2009,48(42):10151-10161.
[27] Wecksler S, Stoll S, Iavarone A, et al. Interaction of PqqE and PqqD in the pyrroloquinoline quinone (PQQ) biosynthetic pathway links PqqD to the radical SAM superfamily. Chemical Communications, 2010,46(37):7031-7033.
[28] Evans R, Latham J, Xia Y L, et al. Nuclear magnetic resonance structure and binding studies of PqqD, a chaperone required in the biosynthesis of the bacterial dehydrogenase cofactor pyrroloquinoline quinone. Biochemistry, 2017,56(21):2735-2746.
[29] Tsai T Y, Yang C Y, Shih H L, et al. Xanthomonas campestris PqqD in the pyrroloquinoline quinone biosynthesis operon adopts a novel saddle-like fold that possibly serves as a PQQ carrier. Proteins, 2009,76(4):1042-1048.
[30] Barr I, Latham J, Iavarone A, et al. Demonstration that the radical s-adenosylmethionine (SAM) enzyme PqqE Catalyzes de novo carbon-carbon cross-linking within a peptide substrate PqqA in the presence of the peptide chaperone PqqD. The Journal of Biological Chemistry, 2016,291(17):8877-8884.
pmid: 26961875
[31] Lavi A, Ngan C H, Attias D, et al. Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins, 2013,81(12):2096-2105.
[32] Vern J K, Walter S, Damodara G. Synthesis of pyrroloquinoline quinone(PQQ): EP20060739658. [2007-12-19].https://www.freepatentsonline.com/EP1866307.html. DOI: US20070072894 A1.
[33] 周怡雯, 陈建华. 新辅酶吡咯喹啉醌研究进展. 中国生化药物杂志, 2008,29(4):279-282.
Zhou Y W, Chen J H. Progress in the research of pyrroloquinoline quinone. Chinese Journal of Biochemical and Pharmaceutics, 2008,29(4):279-282.
[34] Podzelinska K, He S M, Wathier M, et al. Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation. The Journal of Biological Chemistry, 2009,284(25):17216-17226.
pmid: 19366688
[35] Ouchi A, Nakano M, Nagaoka S I, et al. Kinetic study of the antioxidant activity of pyrroloquinolinequinol (PQQH(2), a reduced form of pyrroloquinolinequinone) in micellar solution. Journal of Agricultural and Food Chemistry, 2009,57(2):450-456.
[36] Goodwin P, Anthony C. The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Advances in Microbial Physiology, 1998,40:1-80.
pmid: 9889976
[37] Ramamoorthi R, Lidstorn M. Transcriptional analysis of pqqD and study of the regulation of pyrroloquinoline quinone biosynthesis in Methylobacterium extorquens AM1. Journal of Bacteriology, 1995,177(1):206-211.
[38] 杨靖, 陈文静, 张敏, 等. 甲基营养菌代谢网络途径和代谢工程改造的研究进展. 生物加工过程, 2017,15(6):9-16.
Yang J, Chen W J, Zhang M, et al. Advances in metabolic network pathways and metabolic engineering of methylotrophic bacteria. Chinese Journal of Bioprocess Engineering, 2017,15(6):9-16.
[39] Velterop J, Sellink E, Meulenberg J, et al. Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. Journal of Bacteriology, 1995,177(17):5088-5098.
[40] 徐文, 许然, 张利平. 甲醇利用型吡咯喹啉醌产生菌的筛选及鉴定. 生物技术通报, 2013(1):162-165.
Xu W, Xu R, Zhang L P. Isolation and identification of PQQ producing strains using methanol-utilizing bacteria. Biotechnology Bulletin, 2013(1):162-165.
[41] 姚红涛, 郑璞. Methylopila sp. YHT-1鉴定及其发酵产吡咯喹啉醌. 食品与生物技术学报, 2016,35(7):778-783.
Yao H T, Zheng P. Production of pyrroloquinoline quinone by Methylopila sp. YHT-1. Journal of Food Science and Biotechnology, 2016,35(7):778-783.
[42] Xiong X H, Zhao Y, Ge X, et al. Production and radioprotective effects of pyrroloquinoline quinone. International Journal of Molecular Sciences, 2011,12(12):8913-8923.
[43] Si Z J, Zhu J Z, Wang W G, et al. Novel and efficient screening of PQQ high-yielding strains and subsequent cultivation optimization. Applied Microbiology and Biotechnology, 2016,100(24):10321-10330.
pmid: 27464830
[44] 李慧芝, 康振, 李江华, 等. 常压室温等离子体诱变扭脱甲基杆菌AM1高产吡咯喹啉醌. 生物工程学报, 2016,32(8):1145-1149.
Li H Z, Kang Z, Li J H, et al. Mutagenesis of Methylobacterium extorquens AM1 for increasing pyrroloquinoline quinone production by atmospheric and room temperature plasma. Chinese Journal of Biotechnology, 2016,32(8):1145-1149.
[45] 钟杉杉. 吡咯喹啉醌高产菌的筛选、诱变、发酵及基因克隆. 北京: 北京化工大学, 2013.
Zhong S S. Screening, mutation, fermentation and gene cloning of pyrroloquinoline quinone-producing strain. Beijing: Beijing University of Chemical Technology, 2013.
[46] 柯崇榕. 适应性驯化选育高产吡咯喹啉醌的生丝微菌突变株. 生物工程学报, 2020,36(1):152-161.
Ke C R. Breeding of Hyphomicrobium denitrificans for high production of pyrroloquinoline quinone by adaptive directed domestication. Chinese Journal of Biotechnolog, 2020,36(1):152-161.
[47] 孙继国, 韩增叶, 葛喜珍, 等. 基于重组大肠杆菌无细胞体系生产吡咯喹啉醌. 生物技术通报, 2014,27(4):164-168.
Sun J G, Han Z Y, Ge X Z, et al. Exploiting cell-free system of recombinant E. coli to synthesize pyrroloquinoline quinone. Biotechnology Bulletin, 2014,27(4):164-168.
[48] 张军静, 田平芳. 基于全局转录工程促进肺炎克雷伯氏菌吡咯喹啉醌的生物合成. 北京化工大学学报(自然科学版), 2014,41(3):92-96.
Zhang J J, Tian P F. Enhanced production of pyrroloquinoline quinone in Klebsiella pneumoniae via global transcription machinery engineering. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2014,41(3):92-96.
[49] 王歆, 张惟材. 吡咯喹啉醌生物合成研究进展. 生物技术通讯, 2007,18(3):534-538.
Wang X, Zhang W C. Advances in biosynthesis of pyrroloquinoline quinone. Letters in Biotechnology, 2007,18(3):534-538.
[50] 孙继国. 利用不同启动子在大肠杆菌与肺炎克雷伯氏菌中合成PQQ的研究. 北京: 北京化工大学, 2013.
Sun J G. Research on PQQ synthesis in recombinant E.coli and Klebsiella pneumoniae by utilizing different promoters. Beijing: Beijing University of Chemical Technology, 2013.
[51] Wan H, Xia Y, Li J H, et al. Identification of transporter proteins for PQQ-secretion pathways by transcriptomics and proteomics analysis in Gluconobacter oxydans WSH-003. Frontiers of Chemical Science and Engineering, 2017,11(1):72-88.
[52] 王朝绚. 吡咯喹啉醌工程菌构建及关键基因研究. 北京: 北京化工大学, 2013.
Wang C X. Engineering strains for production of pyrroloquinoline quinone and dissecting key genes. Beijing: Beijing University of Chemical Technology, 2013.
[53] 鄢芳清, 韩亚昆, 李娟, 等. 大肠杆菌芳香族氨基酸代谢工程研究进展. 生物加工过程, 2017,15(5):32-39,85.
Yan F Q, Han Y K, Li J, et al. Metabolic engineering of aromatic amino acids in Escherichia coli. Chinese Journal of Bioprocess Engineering, 2017,15(5):32-39,85.
[54] 李盼盼. 氧化葡萄糖酸杆菌合成吡咯喹啉醌的研究. 郑州: 郑州轻工业学院, 2016.
Li P P. The research on pyrroloquinoline quinone biosynthesis in Gluconobacter oxidans. Zhengzhou: Zhengzhou University of Light Industry, 2016.
[1] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[2] 宇光海, 彭海芬, 王翱宇. 阿维拉霉素生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 94-102.
[3] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[4] 李志刚,陈宝峰,张中华,常景玲. 辅助能量物质强化环磷酸腺苷发酵合成机制 *[J]. 中国生物工程杂志, 2020, 40(1-2): 102-108.
[5] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[6] 匙占库,文孟良,赵江源,李铭刚,韩秀林. 桉叶素生物合成研究进展[J]. 中国生物工程杂志, 2018, 38(11): 92-102.
[7] 陈娟, 杨慧林, 黄运红, 龙中儿. 炭样小单孢菌中抗生素生物合成相关蛋白的筛选[J]. 中国生物工程杂志, 2016, 36(7): 55-63.
[8] 吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略[J]. 中国生物工程杂志, 2015, 35(9): 122-127.
[9] 尹守亮, 张玉秀, 张琪, 豆梦楠, 杨克迁. 无机磷酸盐对链霉菌合成次级代谢产物的影响[J]. 中国生物工程杂志, 2015, 35(9): 105-113.
[10] 王永成, 陈涛, 石婷, 王智文, 赵学明. 嘌呤核苷及其衍生物的代谢工程[J]. 中国生物工程杂志, 2015, 35(5): 87-95.
[11] 李小鑫, 高明昊, 张苗苗, 刘晓晨, 乔长晟. 溶解氧对γ-聚谷氨酸合成的影响[J]. 中国生物工程杂志, 2015, 35(3): 42-48.
[12] 王翠翠, 许蕙金兰, 傅达奇. 茄属生物碱的研究进展[J]. 中国生物工程杂志, 2015, 35(2): 99-104.
[13] 蒋延超, 蒋世云, 傅凤鸣, 黄凯, 康星欣, 徐丹. 透明质酸生物合成途径及基因工程研究进展[J]. 中国生物工程杂志, 2015, 35(1): 104-110.
[14] 高燕会, 黄春红, 朱玉球, 童再康. 植物花青素苷生物合成及调控的研究进展[J]. 中国生物工程杂志, 2012, 32(08): 94-99.
[15] 金慧 栾雨时. 转录因子在植物抗病基因工程中的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 0-0.