Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (9): 134-140    DOI: 10.13523/j.cb.20170918
综述     
球拟假丝酵母生物合成槐糖脂及其衍生物研究进展
张亚光, 张传波, 卢文玉
天津大学化工学院生物工程系系统生物工程教育部重点实验室天津化学化工协同创新中心合成生物学平台 天津 300072
Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola
ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu
Department of Biological Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(618 KB)   HTML
摘要: 槐糖脂是一种糖脂类生物表面活性剂,因其低毒性、生物可降解性、生物相容性及良好的生物活性而备受关注,利用球拟假丝酵母生产生物表面活性剂槐糖脂极大地加速了其产业化进程。对槐糖脂在球拟假丝酵母中的生物合成途径、关键酶的特点和基因工程改造假丝酵母合成新型生物表面活性剂的最新进展进行了综述。为扩展球拟假丝酵母作为糖脂化合物合成底盘细胞提供建议和前景分析。
关键词: 球拟假丝酵母槐糖脂生物合成    
Abstract: Sophorolipids, which is a kind of extracellular products, was produced by Starmerella bombicola under aerobic condition. As the member of biosurfactants, sophorolipids has shown excellent surface activity, biodegrade ability, low ecotoxicity and biocompatibility. Research progress of biosynthesis of sophorolipids is summarized, including metabolic pathway, key enzymes and genetic engineering of S. bombicola. Basic problems on efficient synthesis of sophorolipids in S. bombicola are discussed and a prospect of using S. bombicola as a new chassis for sophorolipids biosynthesis is analyzed.
Key words: Sophorolipids    Biosynthesis    Starmerella bombicola
收稿日期: 2017-04-18 出版日期: 2017-09-25
ZTFLH:  Q819  
基金资助: 天津市科技重大专项与工程资助项目(16YFXTSF00460)
通讯作者: 卢文玉     E-mail: wenyulu@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张亚光
张传波
卢文玉

引用本文:

张亚光, 张传波, 卢文玉. 球拟假丝酵母生物合成槐糖脂及其衍生物研究进展[J]. 中国生物工程杂志, 2017, 37(9): 134-140.

ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola. China Biotechnology, 2017, 37(9): 134-140.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170918        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I9/134

[1] Van Bogaert I, Saerens K, De Muynck C, et al. Microbial production and application of sophorolipids. Applied Microbiology and Biotechnology, 2007, 76(1):23.
[2] Banat I M, Makkar R S, Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53(5):495-508.
[3] Kim S Y, Oh D K, Lee K H, et al. Effect of soybean oil and glucose on sophorose lipid fermentation by Torulopsis bombicola in continuous culture. Applied Microbiology and Biotechnology, 1997, 48(1):23-26.
[4] Cooper D G, Paddock D A. Production of a Biosurfactant from Torulopsis bombicola. Applied & Environmental Microbiology, 1984, 47(1):173.
[5] Baccile N, Nassif N, Malfatti L, et al. Sophorolipids:a yeast-derived glycolipid as greener structure directing agents for self-assembled nanomaterials. Green Chemistry, 2010, 12(9):1564-1567.
[6] Makkar R, Cameotra S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 2002, 58(4):428-434.
[7] Otto R T, Daniel H J, Pekin G, et al. Production of sophorolipids from whey. Ⅱ. Product composition, surface active properties, cytotoxicity and stability against hydrolases by enzymatic treatment. Applied Microbiology & Biotechnology, 1999, 52(4):495-501.
[8] Cavalero D A, Cooper D G. The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. Journal of Biotechnology, 2003, 103(1):31-41.
[9] Daniel H J, Syldatk C R M. Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnology Letters, 1998, 20(12):1153-1156.
[10] Rau U, Manzke C, Wagner F. Influence of substrate supply on the production of sophorose lipids by Candida bombicola, ATCC 22214. Biotechnology Letters, 1996, 18(2):149-154.
[11] Asmer H J, Lang S, Wagner F, et al. Microbial production, structure elucidation and bioconversion of sophorose lipids. Journal of the American Oil Chemists' Society, 1988, 65(9):1460-1466.
[12] Davila A M, Marchal R, Monin N, et al. Identification and determination of individual sophorolipids in fermentation products by gradient elution high-performance liquid chromatography with evaporative light-scattering detection. J Chromatogr, 1993, 648(1):139-149.
[13] Ashby R D, Nuñez A, Solaiman D K Y, et al. Sophorolipid biosynthesis from a biodiesel co-product stream. Journal of the American Oil Chemists' Society, 2005, 82(9):625-630.
[14] Shah V, Doncel G F, Seyoum T, et al. Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrobial Agents & Chemotherapy, 2005, 49(10):4093-100.
[15] Shin J D, Lee J, Kim Y B, et al. Production and characterization of methyl ester sophorolipids with 22-carbon-fatty acids. Bioresource Technology, 2010, 101(9):3170-4.
[16] Jia X, Qi L, Zhang Y, et al. Computational fluid dynamics simulation of a novel bioreactor for sophorolipids production. Chinese Journal of Chemical Engineering, 2016,25(6):732-740.
[17] Yang X, Zhu L, Xue C, et al. Recovery of purified lactonic sophorolipids by spontaneous crystallization during the fermentation of sugarcane molasses with Candida albicans O-13-1. Enzyme & Microbial Technology, 2012, 51(6-7):348-353.
[18] Ina V B, Develter D, Soetaert W, et al. Cerulenin inhibits de novo sophorolipid synthesis of Candida bombicola. Biotechnology Letters, 2008, 30(10):1829.
[19] Hommel R K, Stegner S, Kleber H P, et al. Effect of ammonium ions on glycolipid production by Candida, (Torulopsis) apicola. Applied Microbiology and Biotechnology, 1994, 42(2):192-197.
[20] Van Bogaert I N, Groeneboer S, Saerens K, et al. The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. Febs Journal, 2011, 278(2):206-221.
[21] Van Bogaert I N A, Demey M, Develter D, et al. Importance of the cytochrome P450 monooxygenase CYP52 family for the sophorolipid-producing yeast Candida bombicola. FEMS yeast research, 2009, 9(1):87-94.
[22] Saerens K M J, Roelants S L K W, Van Bogaert I N A, et al. Identification of the UDP-glucosyltransferase gene UGTA1, responsible for the first glucosylation step in the sophorolipid biosynthetic pathway of Candida bombicola ATCC 22214. Fems Yeast Research, 2011, 11(1):123-132.
[23] Saerens K M J, Roelants S L K W, Van Bogaert I N A, et al. Identification of the UDP-glucosyltransferase gene UGTA1, responsible for the first glucosylation step in the sophorolipid biosynthetic pathway of Candida bombicola ATCC 22214. Fems Yeast Research, 2011, 11(1):123-132.
[24] Saerens K M, Saey L, Soetaert W. One-step production of unacetylated sophorolipids by an acetyltransferase negative Candida bombicola. Biotechnology & Bioengineering, 2011, 108(12):2923-2931.
[25] Andrade A C, Nistelrooy J G M V, Peery R B, et al. The role of ABC transporters from Aspergillus nidulans, in protection against cytotoxic agents and in antibiotic production. Molecular Genetics and Genomics, 2000, 263(6):966-977.
[26] Krogh A, Larsson B, Von H G, et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. Journal of Molecular Biology, 2001, 305(3):567.
[27] Van Bogaert I N, Holvoet K, Roelants S L, et al. The biosynthetic gene cluster for sophorolipids:a biotechnological interesting biosurfactant produced by Starmerella bombicola. Molecular Microbiology, 2013, 88(3):501-509.
[28] Dawson R J P, Locher K P. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. Febs Letters, 2007, 581(5):935.
[29] Bogaert I N A V, Zhang J, Soetaert W. Microbial synthesis of sophorolipids. Process Biochemistry, 2011, 46(4):821-833.
[30] Ciesielska K, Van Bogaert I N, Chevineau S, et al. Exoproteome analysis of Starmerella bombicola results in the discovery of an esterase required for lactonization of sophorolipids. Journal of Proteomics, 2014, 98(4):159-174.
[31] Ciesielska K, Roelants S L K W, Bogaert I N A V, et al. Characterization of a novel enzyme- Starmerella bombicola, lactone esterase (SBLE)-responsible for sophorolipid lactonization. Applied Microbiology & Biotechnology, 2016, 100(22):1-13.
[32] Van Bogaert I N, De Maeseneire S L, Develter D, et al. Development of a transformation and selection system for the glycolipid-producing yeast Candida bombicola. Yeast,2008, 25(4):273-278.
[33] Roelants S L K W, De Maeseneire S L, Ciesielska K, et al. Biosurfactant gene clusters in eukaryotes:regulation and biotechnological potential. Applied Microbiology and Biotechnology, 2014, 98(8):3449-3461.
[34] Saerens K M J, Saey L, Soetaert W. One-step production of unacetylated sophorolipids by an acetyltransferase negative Candida bombicola. Biotechnology and Bioengineering, 2011, 108(12):2923-2931.
[35] Van Bogaert I N A, Buyst D, Martins J C, et al. Synthesis of bolaform biosurfactants by an engineered Starmerella bombicola yeast. Biotechnology and Bioengineering, 2016, 113(12):2644-2651.
[36] Van Bogaert I N A, Sabirova J, Develter D, et al. Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production. FEMS Yeast Research, 2009, 9(4):610-617.
[37] Matsuzawa T, Koike H, Saika A, et al. Draft genome sequence of the yeast Starmerella bombicola NBRC10243, a producer of sophorolipids, glycolipid biosurfactants. Genome Announcements, 2015, 3(2):e00176-15.
[38] Li J, Li H, Li W, et al. Identification and characterization of a flavin-containing monooxygenase MoA and its function in a specific sophorolipid molecule metabolism in Starmerella bombicola. Applied Microbiology and Biotechnology, 2016, 100(3):1307-1318.
[39] Li J, Xia C, Fang X, et al. Identification and characterization of a long-chain fatty acid transporter in the sophorolipid-producing strain Starmerella bombicola. Applied Microbiology and Biotechnology, 2016, 100(16):7137-7150.
[40] Takahashi F, Igarashi K, Hagihara H. Identification of the fatty alcohol oxidase FAO1 from Starmerella bombicola and improved novel glycolipids production in an FAO1 knockout mutant. Applied Microbiology and Biotechnology, 2016, 100(22):9519-9528.
[41] Roelants S L K W, Saerens K M J, Derycke T, et al. Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnology and Bioengineering, 2013, 110(9):2494-2503.
[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[4] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[5] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[6] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[7] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[8] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[9] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[10] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[11] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[12] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[13] 欧梦莹,王晓政,林双君,关统伟,林宜锦. 链黑菌素研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 100-107.
[14] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[15] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.