Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (11): 89-99    DOI: 10.13523/j.cb.2106002
综述     
细菌转录起始调控机制*
卜恺璇1,2,周翠霞2,3,**(),路福平3,**(),朱传合1
1 山东农业大学食品科学与工程学院 泰安 271018
2 泰山学院生物与酿酒工程学院 泰安 271000
3 天津科技大学生物工程学院 工业发酵微生物教育部重点实验室 天津 300457
Research on the Regulation Mechanism of Bacterial Transcription Initiation
BU Kai-xuan1,2,ZHOU Cui-xia2,3,**(),LU Fu-ping3,**(),ZHU Chuan-he1
1 College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
2 College of Biology and Brewery Engineering, Taishan University, Tai’an 271000, China;
3 College of Bioengineering, Tianjin University of Science and Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457,China
 全文: PDF(1375 KB)   HTML
摘要:

原核生物同一种群的每个细胞都是和外界环境直接接触的,它们主要通过开启或关闭某些基因的表达来适应环境条件。所以,环境因子往往是调控的效应因子,必须严格调控转录来确保细胞对环境改变做出有效且充分的反应。原核生物基因的表达受多种因素的调控,而对于大多数细菌来说,调控基因表达的关键步骤是启动子识别和RNA聚合酶启动转录。在细菌的细胞中,可以通过调节RNA聚合酶的活性以及改变RNA聚合酶对启动子的结合来优化基因的转录过程以适应不同环境变化。总结了目前已发现的参与细菌细胞转录调节的各类因子,从这些因子对启动子的作用、RNA聚合酶的作用以及两者的相互作用等方面阐述它们调控基因表达的分子机制。总结多种基因调控的作用,加深对转录起始过程的认识,希望能对未来调控转录起始过程来实现目标基因的高效表达和不利基因的抑制表达提供思路,为以后的工业菌株改造提供依据。

关键词: 转录过程调控RNA聚合酶启动子调节因子    
Abstract:

In prokaryotes and eukaryotes, the regulatory systems are very different and they usually change with the environment. Environmental factors play an important role in gene expression in prokaryotes because every cell in a population of prokaryotes is in direct contact with the environment, which leads to the adaptation by turning certain genes on or off. Therefore, environmental factors are often regulatory effectors, and transcription must be rigorously regulated to ensure that cells respond effectively and adequately to environmental changes. Thus, the regulation of gene expression is crucial to the overall fitness of the cell. The expression of prokaryotic genes is regulated by many factors, and transcription can be roughly divided into three main stages: initiation, extension and termination. For most bacteria, the key steps to regulate gene expression are promoter recognition in the process of transcription initiation and RNA polymerase to initiate transcription. The formation of the transcription initiation complex between RNA polymerase and promoter DNA is the most important regulatory process of bacterial gene expression. Promoters control the transcription of all genes, and the regulation of most promoters is complex. Promoter activity is determined by sequence elements that optimize promoter strength, and strong promoters usually have elements similar to the common sequence. Since the expression level of most transcription units is dependent on environmental inputs, many transcription factors are involved. Transcription factors involve RNA polymerases in different states, promote desired RNA polymerase function and regulate RNA polymerase activity. Each transcription unit is controlled by a regulatory region containing at least one promoter, usually located upstream of the first readable frame. These regulatory regions contain sequence elements that interact with RNA polymerases, as well as binding targets for different transcription factors involved in regulation. Transcription initiation requires the interaction of RNA polymerase with promoter DNA and the formation of an open complex(in order for transcription to occur, the closed promoter complex DNA is double-stranded and must be isomerized into an open promoter complex where the DNA melts into a transcription bubble and the single-stranded template DNA is delivered to the RNA polymerase active site).In bacterial cells, promoter recognition of RNA polymerase is a multi-step process involving multiple protein-DNA interactions and several structural and kinetic intermediates. Therefore, the transcription process of genes can be optimized to adapt to different environmental changes by adjusting the activity of RNA polymerase and changing the binding of RNA polymerase to promoter. Regulation is mediated by a combination of sigma factors, activators, repressors, and transcription factors, as well as by changes in DNA super-helix and local nucleoprotein structure. In this paper, various factors involved in the transcription regulation of bacterial cells have been summarized, and the molecular mechanisms of these factors regulating gene expression are expounded from the aspects of the effects of these factors on promoters, the effects of RNA polymerase and their interactions. This paper aims to summarize the role of various regulation mechanisms, and deepen the understanding of transcription initiation process, in the hope of providing ideas for the future regulation of transcription initiation process to achieve the efficient expression of target genes and the inhibition of the expression of adverse genes, and to provide a basis for the future modification of industrial strains.

Key words: Transcriptional process    Regulation    RNA polymerase    Promoter    Adjustment factor
收稿日期: 2021-06-02 出版日期: 2021-12-01
ZTFLH:  Q812  
基金资助: * 国家重点研发计划(2021YFC2100402);泰安市科技创新发展项目(2020GX029)
通讯作者: 周翠霞,路福平     E-mail: zhou.cui.xia@163.com;lfp@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卜恺璇
周翠霞
路福平
朱传合

引用本文:

卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.

BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation. China Biotechnology, 2021, 41(11): 89-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106002        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I11/89

图1  RNA聚合酶核心酶与σ因子结合
图2  启动子与RNA聚合酶σ因子的结合
图3  转录因子在启动子上的激活作用
图4  转录因子在启动子上的抑制作用
图5  启动子序列修饰对转录起始的调控
[1] Sekine S I, Tagami S, Yokoyama S. Structural basis of transcription by bacterial and eukaryotic RNA polymerases. Current Opinion in Structural Biology, 2012, 22(1):110-118.
doi: 10.1016/j.sbi.2011.11.006
[2] Browning D F, Busby S J W. Local and global regulation of transcription initiation in bacteria. Nature Reviews Microbiology, 2016, 14(10):638-650.
doi: 10.1038/nrmicro.2016.103 pmid: 27498839
[3] Ho M X, Hudson B P, Das K, et al. Structures of RNA polymerase-antibiotic complexes. Current Opinion in Structural Biology, 2009, 19(6):715-723.
doi: 10.1016/j.sbi.2009.10.010
[4] 杜耀华, 王正志. 原核启动子识别研究进展. 生物技术, 2005, 15(5):80-83.
Du Y H, Wang Z Z. A review for prokaryotic promoter recognition. Biotechnology, 2005, 15(5):80-83.
[5] Saecker R M, Record M T Jr, DeHaseth P L Jr. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. Journal of Molecular Biology, 2011, 412(5):754-771.
doi: 10.1016/j.jmb.2011.01.018 pmid: 21371479
[6] Ishihama A. Functional modulation of Escherichia coli RNA polymerase. Annual Review of Microbiology, 2000, 54:499-518.
pmid: 11018136
[7] Cook H, Ussery D W. Sigma factors in a thousandE. coligenomes. Environmental Microbiology, 2013, 15(12):3121-3129.
doi: 10.1111/emi.2013.15.issue-12
[8] Smith J D. Signals, switches, regulons and cascades: Control of bacterial gene expression//Hodgson D A,Thomas C M. Biochemistry and Molecular Biology Education, 2003, 31(4):274.
doi: 10.1002/(ISSN)1539-3429
[9] Gruber T M, Gross C A. Multiple Sigma subunits and the partitioning of bacterial transcription space. Annual Review of Microbiology, 2003, 57(1):441-466.
doi: 10.1146/micro.2003.57.issue-1
[10] Mazumder A, Kapanidis A N. Recent advances in understanding σ 70-dependent transcription initiation mechanisms. Journal of Molecular Biology, 2019, 431(20):3947-3959.
doi: 10.1016/j.jmb.2019.04.046
[11] Danson A E, Jovanovic M, Buck M, et al. Mechanisms of σ54-dependent transcription initiation and regulation. Journal of Molecular Biology, 2019, 431(20):3960-3974.
doi: S0022-2836(19)30229-3 pmid: 31029702
[12] Wigneshweraraj S, Bose D, Burrows P C, et al. Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Molecular Microbiology, 2008, 68(3):538-546.
doi: 10.1111/j.1365-2958.2008.06181.x pmid: 18331472
[13] Helmann J D. Anti-Sigma factors. Current Opinion in Microbiology, 1999, 2(2):135-141.
pmid: 10322161
[14] Chatterji D, Kumar Ojha A. Revisiting the stringent response, ppGpp and starvation signaling. Current Opinion in Microbiology, 2001, 4(2):160-165.
pmid: 11282471
[15] Barker M M, Gaal T, Josaitis C A, et al. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. Journal of Molecular Biology, 2001, 305(4):673-688.
pmid: 11162084
[16] Barker M M, Gaal T, Gourse R L. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. Journal of Molecular Biology, 2001, 305(4):689-42.
pmid: 11162085
[17] Schneider D A, Ross W, Gourse R L. Control of rRNA expression in Escherichia coli. Current Opinion in Microbiology, 2003, 6(2):151-156.
pmid: 12732305
[18] Dillon S C, Dorman C J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nature Reviews Microbiology, 2010, 8(3):185-195.
doi: 10.1038/nrmicro2261 pmid: 20140026
[19] Azam T A, Ishihama A. Twelve species of the nucleoid-associated protein from Escherichia coli: sequence recognition specificity and DNA binding affinity. Journal of Biological Chemistry, 1999, 274(46):33105-33113.
pmid: 10551881
[20] Petersen C, Møller L B, Valentin-Hansen P. The cryptic adenine deaminase gene of Escherichia coli: silencing by the nucleoid-associated DNA-binding protein, H-NS, and activation by insertion elements. Journal of Biological Chemistry, 2002, 277(35):31373-31380.
pmid: 12077137
[21] McLeod S M, Johnson R C. Control of transcription by nucleoid proteins. Current Opinion in Microbiology, 2001, 4(2):152-159.
pmid: 11282470
[22] Browning D F, Cole J A, Busby S J. Suppression of FNR-dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H-NS: modulation of transcription initiation by a complex nucleo-protein assembly. Molecular Microbiology, 2000, 37(5):1258-1269.
pmid: 10972841
[23] Grainger D C, Hurd D, Goldberg M D, et al. Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Research, 2006, 34(16):4642-4652.
pmid: 16963779
[24] Cho B K, Knight E M, Barrett C L, et al. Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/ AT-tracts. Genome Research, 2008, 18(6):900-910.
doi: 10.1101/gr.070276.107
[25] Opel M L, Aeling K A, Holmes W M, et al. Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism. Molecular Microbiology, 2004, 53(2):665-674.
doi: 10.1111/mmi.2004.53.issue-2
[26] Squire D J P, Xu M, Cole J A, et al. Competition between NarL-dependent activation and Fis-dependent repression controls expression from the Escherichia coli yeaR and ogt promoters. The Biochemical Journal, 2009, 420(2):249-257.
doi: 10.1042/BJ20090183
[27] Browning D F, Grainger D C, Busby S J. Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Current Opinion in Microbiology, 2010, 13(6):773-780.
doi: 10.1016/j.mib.2010.09.013 pmid: 20951079
[28] Martínez-Antonio A, Collado-Vides J. Identifying global regulators in transcriptional regulatory networks in bacteria. Current Opinion in Microbiology, 2003, 6(5):482-489.
pmid: 14572541
[29] Flores-Bautista E, Cronick C L, Fersaca A R, et al. Functional prediction of hypothetical transcription factors of Escherichia coli K-12 based on expression data. Computational and Structural Biotechnology Journal, 2018, 16:157-166.
doi: 10.1016/j.csbj.2018.03.003 pmid: 30050664
[30] Lu P. The lac Operon: A Short History of a Genetic Paradigm[J]. Science, 1997, 275(5302):938-939.
doi: 10.1126/science.275.5302.938
[31] Plumbridge J. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Current Opinion in Microbiology, 2002, 5(2):187-193.
doi: 10.1016/S1369-5274(02)00296-5
[32] Lee D J, Minchin S D, Busby S J W. Activating transcription in bacteria. Annual Review of Microbiology, 2012, 66:125-152.
doi: 10.1146/micro.2012.66.issue-1
[33] Benoff B. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science, 2002, 297(5586):1562-1566.
pmid: 12202833
[34] Feng Y, Zhang Y, Ebright R H. Structural basis of transcription activation. Science, 2016, 352(6291):1330-1333.
doi: 10.1126/science.aaf4417 pmid: 27284196
[35] Philips S J, Canalizo-Hernandez M, Yildirim I, et al. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science, 2015, 349(6250):877-881.
doi: 10.1126/science.aaa9809 pmid: 26293965
[36] Heldwein E E Z, Brennan R G. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature, 2001, 409(6818):378-382.
doi: 10.1038/35053138
[37] Bush M, Dixon R. The role of bacterial enhancer binding proteins as specialized activators of σ 54-dependent transcription. Microbiology and Molecular Biology Reviews, 2012, 76(3):497-529.
doi: 10.1128/MMBR.00006-12
[38] Müller-Hill B. Some repressors of bacterial transcription. Current Opinion in Microbiology, 1998, 1(2):145-151.
pmid: 10066473
[39] Majumdar A, Adhya S. Effect of ethylation of operator-phosphates on Gal represser binding: DNA contortion by repressor. Journal of Molecular Biology, 1989, 208(2):217-223.
pmid: 2671389
[40] Kamenšek S, Browning D F, Podlesek Z, et al. Silencing of DNase colicin E8 gene expression by a complex nucleoprotein assembly ensures timely colicin induction. PLoS Genetics, 2015, 11(6):e1005354. DOI: 10.1371/journal.pgen.1005354.
doi: 10.1371/journal.pgen.1005354
[41] Sánchez-Romero M A, Cota I, Casadesús J. DNA methylation in bacteria: from the methyl group to the methylome. Current Opinion in Microbiology, 2015, 25:9-16.
doi: 10.1016/j.mib.2015.03.004 pmid: 25818841
[42] van der Woude M W. Phase variation: how to create and coordinate population diversity. Current Opinion in Microbiology, 2011, 14(2):205-211.
doi: 10.1016/j.mib.2011.01.002
[43] Lambert L J, Wei Y F, Schirf V, et al. T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. The EMBO Journal, 2004, 23(15):2952-2962.
doi: 10.1038/sj.emboj.7600312
[44] Hinton D M, Vuthoori S. Efficient inhibition of Escherichia coli RNA polymerase by the bacteriophage T4 AsiA protein requires that AsiA binds first to free σ70. Journal of Molecular Biology, 2000, 304(5):731-739.
pmid: 11188759
[45] Hinton D M. Transcriptional control in the prereplicative phase of T4 development. Virology Journal, 2010, 7(1):1-16.
doi: 10.1186/1743-422X-7-1
[46] Shah I M, Wolf R E Jr. Novel protein-protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase α subunit: SoxS functions as a Co-Sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress. Journal of Molecular Biology, 2004, 343(3):513-532.
doi: 10.1016/j.jmb.2004.08.057
[47] Nakano S, Küster-Schöck E, Grossman A D, et al. Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. PNAS, 2003, 100(23):13603-13608.
doi: 10.1073/pnas.2235180100
[48] Murray H D, Schneider D A, Gourse R L. Control of rRNA expression by small molecules is dynamic and nonredundant. Molecular Cell, 2003, 12(1):125-134.
pmid: 12887898
[49] Schneider D A, Gaal T, Gourse R L. NTP-sensing by rRNA promoters in Escherichia coli is direct. PNAS, 2002, 99(13):8602-8607.
pmid: 12060720
[50] Turnbough C L Jr, Switzer R L. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiology and Molecular Biology Reviews, 2008, 72(2):266-300.
doi: 10.1128/MMBR.00001-08 pmid: 18535147
[1] 颜愈佳,邹玲. piRNA生物学起源及功能研究进展[J]. 中国生物工程杂志, 2021, 41(5): 45-50.
[2] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[3] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[4] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[5] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[6] 宇光海, 彭海芬, 王翱宇. 阿维拉霉素生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 94-102.
[7] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[8] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.
[9] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[10] 高小朋,何猛超,许可,李春. 工业微生物发酵过程中pH调控研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 93-99.
[11] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[12] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[13] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[14] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[15] 黄宇,黄书婷,张夕梅,刘堰. 稀有鮈鲫HSP70基因启动子的克隆及功能分析[J]. 中国生物工程杂志, 2019, 39(10): 9-16.