Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (11): 86-91    
技术与方法     
酸碱处理纯化玉米秸秆纤维素及还原糖酶解实验研究
武崇辉1, 寇巍2, 邵丽杰2, 张欢2, 曹焱鑫2, 张大雷2
1 沈阳航空航天大学能源与环境学院 沈阳 110136;
2 辽宁省能源研究所 营口 115003
Purify Cellulose of Corn Straw by Acid and Alkali Pretreatment and Research of Reducing Sugar by Enzymatic Hydrolysis
WU Chong-hui1, KOU Wei2, SHAO Li-jie2, ZHANG Huan2, CAO Yan-xin2, ZHANG Da-lei2
1. Shenyang Aerospace University, Institute of Energy & Environment, Shenyang 110136, China;
2. Liaoning Institute of Energy Resource, Yingkou 115003, China
 全文: PDF(837 KB)   HTML
摘要: 为提高玉米秸秆酶解还原糖产率,采用稀酸和稀碱对玉米秸秆进行预处理。通过分析发现,处理后秸秆中纤维素含量由原来的39.15%增加到91.34%,半纤维素和木质素大部分被除去,而纤维素质量损失仅为2.01%;X射线衍射分析发现处理后秸秆纤维素结晶度升高了124.13%;红外光谱分析表明,经酸碱处理后秸秆中大部分半纤维素和木质素结构被破坏;扫描电镜观察发现,处理后纤维束表面缝隙和孔洞明显增多;进一步纤维素酶解实验发现,未处理秸秆酶解还原糖产率仅为13.66%,酸碱处理后秸秆酶解还原糖产率可达65.17%,较处理前提高了377.09%,且酶解时间缩短了24h左右。结果表明,稀酸稀碱预处理可以明显提高玉米秸秆纤维素的转化利用效率。
关键词: 酸碱预处理玉米秸秆纤维素还原糖酶解产率    
Abstract: In order to improve reducing sugar yield of corn straw, corn straw was pretreated by dilute acid and alkali. The finding by analysis showed that the content of cellulose was increased from 39.15% to 91.34%, and most of hemicellulose and lignin was eliminated, yet the mass loss of cellulose was only 2.01%. X-ray diffraction showed the crystalline degree of cellulose increased by 124.13%; Infrared spectrum analysis found that most of the structure of hemicellulose and lignin was destructed after corn straw was pretreated by acid and alkali; Scanning electron microscope pictures found that cracks and holes increased obviously on the surface of fiber bundle. Further cellulose enzymolysis experiment showed that the yield of reducing sugar of untreated corn straw was only 13.66%, while the yield of corn straw treated by acid and alkali can reach 65.17%,improved 377.09% compared with the materials untreated, while enzymolysis time could be reduced about 24h. The result showed that dilute acid and alkali pretreatment could obviously increase the conversion efficiency of corn straw cellulose.
Key words: Acid and alkali pretreatment    Corn straw    Cellulose    Reducing sugar    Enzymolysis yield
收稿日期: 2013-06-08 出版日期: 2013-11-25
ZTFLH:  Q814  
基金资助: 国家“863” 计划资助项目(2013AA050701)
通讯作者: 张大雷     E-mail: daleizhang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
武崇辉
邵丽杰
张欢
曹焱鑫
张大雷
寇巍

引用本文:

武崇辉, 寇巍, 邵丽杰, 张欢, 曹焱鑫, 张大雷. 酸碱处理纯化玉米秸秆纤维素及还原糖酶解实验研究[J]. 中国生物工程杂志, 2013, 33(11): 86-91.

WU Chong-hui, KOU Wei, SHAO Li-jie, ZHANG Huan, CAO Yan-xin, ZHANG Da-lei. Purify Cellulose of Corn Straw by Acid and Alkali Pretreatment and Research of Reducing Sugar by Enzymatic Hydrolysis. China Biotechnology, 2013, 33(11): 86-91.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I11/86

[1] 梁英, 梁凌云, 徐凤英, 等. 玉米秸秆液化工艺研究. 安徽农业科学, 2009, 37(27): 13428-13429. Liang Y, Liang L Y, Xu F Y, et al. Study on the liquefaction technology of corn stalks. Journal of Anhui Agricultural Sciences, 2009, 37(27): 13428-13429.
[2] 杨兴, 张起凯, 李萍. 玉米秸秆预处理技术及资源化研究进展.辽宁农业科学, 2009(6): 35-37. Yang X, Zhang Q, Li P. Research advance on pretreatment techniques and recycling in corn stalk research advance on recycling corn stalk.Liaoning Agricultural Sciences, 2009(6): 35-37.
[3] Ming W L, Bruce E D. Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proceeding of the National Academy of Sciences, 2009, 106 (5): 1368 -1373.
[4] Duff S J B, Murray W D. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology, 1996, 55(1): 1-33.
[5] Laura C, Lopez G D. Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes, 1989, 30(2): 153-157.
[6] 李松晔, 刘晓非, 庄旭品等. 棉浆粕纤维素的超声波处理. 应用化学, 2003, 20(11): 1030-1034. Li S Y, Liu X F, Zhuang X P, et al.Ultrasonic treatment of cotton pulp cellulose. Applied Chemistry, 2003, 20(11): 1030-1034.
[7] 李旭东, 王霞. 玉米秸秆预处理研究. 食品与发酵工业, 2008, 34(4): 111-113. Li X D, Wang X. Study on pretreatment of crop straw. Food and Fermentation Industries, 2008, 34(4): 111-113.
[8] 潘亚杰, 张雷, 郭军等. 农作物秸秆生物法降解的研究. 可再生能源, 2005(3): 33-35. Pan Y J, Zhang L, Guo J. The study on biological degrading of crops straw.Renewable Energy, 2005(3): 33-35.
[9] Nathan M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 2005, 96(6): 673-686.
[10] Sun Y, Cheng J Y. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 2002, 83(1): 1-11.
[11] 江南大学. 一种用农作物秸秆制备微晶纤维素的方法:中国. 200910030244.3. 2009-08-12.
[12] 李华, 孔新刚, 王俊. 秸秆饲料中纤维素、半纤维素和木质素的定量分析研究. 新疆农业大学学报, 2007, 30(3): 65-68.. Li H, Kong X G, Wang J. Study on quantitative analysis of hemicellulose and cellulose and lignin in roughage of cereal.Journal of Xinjiang Agricultural University, 2007, 30(3): 65-68.
[13] Wang Y P, Wang G, Cheng H T, et al. Structures of bamboo fiber for textiles. Textile Research Journal, 2010, 80(4): 334-343.
[14] Focher B, Palma M. T. Structural differences between nonwood plant celluloses: Evidence from solid state NMR, vibrational spectroscopy and X-ray difractometry. Industrial Crops and Products, 2001, 13: 193-208.
[15] Behera B K, Arora M, Sharma D K. Scanning electorn microscopic(SEM) studies on structural architecture of lignocellulosic materials of calotropis procera during Its processing for saccharification. Bioresource Technology, 1996, 58: 241-245.
[16] Wang K, Wang F, Jiang J X, et al. Structure, composition and enzymatic hydrolysis of steam-exploded lespedeza stalks. Forestry Study in China, 2007, 9(2): 137-141.
[17] 韩德权, 章佳佳. DNS法在普鲁兰多糖发酵液中糖测定的研究. 分析检测, 2008, 29(2): 285-286. Han D Q, Zhang J J. Application of DNS method to the determination of saccharide content in pullulan fermentation broth. Science and Technology of Food Industry, 2008, 29(2):285-286.
[18] Zavadskii A. E. The X-ray Diffraction method of determining the polymorphous composition of cellulose for textured materials. Fibre Chemistry, 2004, 36 (2): 425-430.
[19] Christofer K, Matthias M, Mattias C, et al. SufA-a bacterial enzyme that cleaves fibrinogen and blocks fibrin network formation. Microbiology, 2009, 155(1): 238-248.
[20] Masahisa W, Takeshi O. Synchrotron-radiated X-ray and neutron diffraction study of native cellulose.Cellulose, 1997, 4(3):221-232.
[21] 余洪波, 张昱, 柯静, 等. 生物—碱氧化预处理玉米秸秆酶解条件的优化. 农业工程学报, 2009, 25(4):201-205. u H B, Zhang Y, Ke J, et al.Optimization of enzymatic hydrolysis of corn straw afterbiological-alkaline/oxidative pretreatment. Transactions of the CSAE, 2009, 25(4):201-205.
[22] 寇魏, 赵勇, 闫昌国, 等. 膨化预处理玉米秸秆提高还原糖酶解产率的效果. 农业工程学报, 2010, 26(11): 265-269. Kou W, Zhao Y, Yan C G, et al. Corn straw expansion pretreatment to improve enzymolysis reducingsugar yield. Transactions of the CSAE, 2010, 26(11): 265-269.
[1] 高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.
[2] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[3] 徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.
[4] 张野,王吉平,苏天明,何铁光,王瑾,曾向阳. 筛选微生物降解木质纤维素的研究进展[J]. 中国生物工程杂志, 2020, 40(6): 100-105.
[5] 靳军宝,郑玉荣,白光祖,吴新年,曲建升. 基于Fisher-Pry模型的纤维素预处理技术成熟度分析 *[J]. 中国生物工程杂志, 2018, 38(6): 103-108.
[6] 秦梦彤,胡婧,李冠华. 生物质生物预处理研究进展与展望[J]. 中国生物工程杂志, 2018, 38(5): 85-91.
[7] 郑玉荣,靳军宝,吴新年,白光祖,刘秋燕. 基于多数据源的纤维素生物降解颠覆性技术研究 *[J]. 中国生物工程杂志, 2018, 38(5): 92-103.
[8] 张莹莹,汤斌,堵国成. 匍枝根霉纤维二糖合成酶胞内糖基供体的初探及结构功能研究[J]. 中国生物工程杂志, 2018, 38(4): 38-45.
[9] 马泽林, 刘家亨, 黄序, 财音青格乐, 朱宏吉. 微生物利用木质纤维素的研究进展[J]. 中国生物工程杂志, 2017, 37(6): 124-133.
[10] 徐珊,李任强,张继福,张云,孙爱君,胡云峰. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶 *[J]. 中国生物工程杂志, 2017, 37(12): 77-83.
[11] 郭雪娇, 查健, 姚坤, 王昕, 李炳志, 元英进. 选育耐受复合抑制剂酿酒酵母提高乙醇产量[J]. 中国生物工程杂志, 2016, 36(5): 97-105.
[12] 孟庆婷, 汤斌. 碳阻遏因子CRE对匍枝根霉产纤维素酶调控作用的研究[J]. 中国生物工程杂志, 2016, 36(3): 31-37.
[13] 葛慧, 陆文钦, 郭志强. 新型能源纤维素丁醇产业化发展现状及前景分析[J]. 中国生物工程杂志, 2016, 36(2): 115-121.
[14] 梁向南, 张鲲, 邹少兰, 王建军, 马媛媛, 洪解放. 鸡尾酒δ整合策略构建表达三类纤维素酶的酿酒酵母工程菌株及初步评价[J]. 中国生物工程杂志, 2016, 36(11): 54-62.
[15] 曹长海, 张全, 关浩, 王领民, 乔凯, 佟明友. 提高木质纤维素酶解糖化效率的研究进展[J]. 中国生物工程杂志, 2015, 35(8): 126-136.