Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (11): 92-98    
综述     
利用大肠杆菌生产N-糖蛋白和糖蛋白疫苗的研究进展
马中瑞, 韩东雷, 赵骏菲, 陈梦琳, 陈敏
山东大学生命科学院 微生物技术国家重点实验室 国家糖工程技术研究中心 济南 250100
Recent Developments in N-linked Glycoproteins Production in Escherichia coli and Glycoprotein Vaccines
MA Zhong-rui, HAN Dong-lei, ZHAO Jun-fei, CHEN Meng-lin, CHEN Min
National Glycoengineering Research Center of The State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China
 全文: PDF(1141 KB)   HTML
摘要: 近年来,随着对空肠弯曲杆菌蛋白N-糖基化修饰系统的研究不断深入,通过关键酶PglB和外源载体蛋白的导入等,此系统在大肠杆菌中的重建成功完成。目前,已能初步利用大肠杆菌生产多种N-糖蛋白。此技术为糖蛋白疫苗的生产开辟了新的途径。此外,通过关键酶表达量的提高和糖基化位点和序列的选择等措施,大肠杆菌蛋白N-糖基化系统的糖基化效率有了进一步提高,同时改善N-糖蛋白的免疫效果的研究亦取得较大进展。这些都为大规模生产糖蛋白疫苗提供了保障。
关键词: N-糖蛋白糖蛋白疫苗PglB空肠弯曲杆菌大肠杆菌糖基化效率免疫效果    
Abstract: In the last decade, the investigations into protein N-linked glycosylation system from Campylobacter jejuni become deeper and its heterologous expression in Escherichia coli through introduction of key enzyme PglB and exogenous carrier proteins continue to progress rapidly. Now several kinds of N-linked glycoprotein could be produced using this Escherichia coli recombinant system. This method provides a new and broad way for producing glycoprotein vaccines. In the meantime, such efforts as enhancement of the expression of PglB and selection of glycosylation sites as well as development in enhancing the immune efficacy of glycoprotein have all significantly improved N-glycosylation efficiency in Escherichia coli, which lead to a good future for large-scale production of glycoprotein vaccines.
Key words: N-linked glycoprotein    Glycoprotein vaccine    PglB    Campylobacter jejuni    Escherichia coli    N-glycosylation efficiency    Immune efficacy
收稿日期: 2013-07-29 出版日期: 2013-11-25
ZTFLH:  Q813  
基金资助: 国家自然科学基金(31270983,31070824)、教育部留学回国人员科研启动基金资助项目第45批、山东省自然科学基金(2009ZRB019SQ)资助项目
通讯作者: 陈敏     E-mail: chenmin@sdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马中瑞
韩东雷
赵骏菲
陈梦琳
陈敏

引用本文:

马中瑞, 韩东雷, 赵骏菲, 陈梦琳, 陈敏. 利用大肠杆菌生产N-糖蛋白和糖蛋白疫苗的研究进展[J]. 中国生物工程杂志, 2013, 33(11): 92-98.

MA Zhong-rui, HAN Dong-lei, ZHAO Jun-fei, CHEN Meng-lin, CHEN Min. Recent Developments in N-linked Glycoproteins Production in Escherichia coli and Glycoprotein Vaccines. China Biotechnology, 2013, 33(11): 92-98.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I11/92

[1] Sethuraman N, Stadheim T A. Challenges in therapeutic glycoprotein production. Current Opinion in Biotechnology, 2006, 17:341-346.
[2] Pandhal J, Wright P C. N-linked glycoengineering for human therapeutic proteins in bacteria. Biotechnology Letters, 2010, 32:1189-1198.
[3] Anderson P. Antibody responses to haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the nontoxic protein crm197. Infection and Immunity, 1983, 39:233-238.
[4] Taylor D N, Trofa A C, Sadoff J, et al. Synthesis, characterization, and clinical evaluation of conjugate vaccines composed of the o-specific polysaccharides of shigella dysenteriae type 1, shigella flexneri type 2a, and shigella sonnei (plesiomonas shigelloides) bound to bacterial toxoids. Infection and Immunity, 1993, 61:3678-3687.
[5] Szymanski C M, Yao R, Ewing C P, et al. Evidence for a system of general protein glycosylation in campylobacter jejuni. Molecular Microbiology, 1999, 32:1022-1030.
[6] Young N M, Brisson J R, Kelly J, et al. Structure of the n-linked glycan present on multiple glycoproteins in the gram-negative bacterium, campylobacter jejuni. The Journal of Biological Chemistry, 2002, 277:42530-42539.
[7] Linton D, Dorrell N, Hitchen P G, et al. Functional analysis of the campylobacter jejuni n-linked protein glycosylation pathway. Molecular Microbiology, 2005, 55:1695-1703.
[8] Wacker M, Linton D, Hitchen P G, et al. N-linked glycosylation in campylobacter jejuni and its functional transfer into E. coli. Science, 2002, 298:1790-1793.
[9] Huang C J, Lin H, Yang X. Industrial production of recombinant therapeutics in escherichia coli and its recent advancements. Journal of Industrial Microbiology & Biotechnology, 2012, 39:383-399.
[10] Terra V S, Mills D C, Yates L E, et al. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. Journal of Medical Microbiology, 2012, 61:919-926.
[11] Schwarz F, Lizak C, Fan Y Y, et al. Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Glycobiology, 2011, 21:45-54.
[12] Lizak C, Gerber S, Numao S, et al. X-ray structure of a bacterial oligosaccharyltransferase. Nature, 2011, 474:350-355.
[13] Li L, Woodward R, Ding Y, et al. Overexpression and topology of bacterial oligosaccharyltransferase pglb. Biochemical and Biophysical Research Communications, 2010, 394:1069-1074.
[14] Chen M M, Glover K J, Imperiali B. From peptide to protein: Comparative analysis of the substrate specificity of n-linked glycosylation in C. jejuni. Biochemistry, 2007, 46:5579-5585.
[15] Kowarik M, Young N M, Numao S, et al. Definition of the bacterial n-glycosylation site consensus sequence. The EMBO Journal, 2006, 25:1957-1966.
[16] Kowarik M, Numao S, Feldman M F, et al. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science, 2006, 314:1148-1150.
[17] Nothaft H, Liu X, McNally D J, et al. Study of free oligosaccharides derived from the bacterial n-glycosylation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:15019-15024.
[18] Liu X, McNally D J, Nothaft H, et al. Mass spectrometry-based glycomics strategy for exploring n-linked glycosylation in eukaryotes and bacteria. Analytical Chemistry, 2006, 78:6081-6087.
[19] Suzuki T, Funakoshi Y. Free n-linked oligosaccharide chains: Formation and degradation. Glycoconjugate Journal, 2006, 23:291-302.
[20] Chantret I, Moore S E. Free oligosaccharide regulation during mammalian protein n-glycosylation. Glycobiology, 2008, 18:210-224.
[21] Hirayama H, Seino J, Kitajima T, et al. Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in saccharomyces cerevisiae. The Journal of Biological Chemistry, 2010, 285:12390-12404.
[22] Pandhal J, Desai P, Walpole C, et al. Systematic metabolic engineering for improvement of glycosylation efficiency in Escherichia coli. Biochemical and Biophysical Research Communications, 2012, 419:472-476.
[23] Miroux B, Walker J E. Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. Journal of Molecular Biology, 1996, 260:289-298.
[24] Fisher A C, Haitjema C H, Guarino C, et al. Production of secretory and extracellular n-linked glycoproteins in escherichia coli. Applied and Environmental Microbiology, 2011, 77:871-881.
[25] Mergulhao F J, Summers D K, Monteiro G A. Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 2005, 23:177-202.
[26] Pandhal J, Woodruff L B, Jaffe S, et al. Inverse metabolic engineering to improve Escherichia coli as an n-glycosylation host. Biotechnology and Bioengineering, 2013, 110:2482-2493.
[27] Fernandez S, Palmer D R, Simmons M, et al. Potential role for toll-like receptor 4 in mediating Escherichia coli maltose-binding protein activation of dendritic cells. Infection and Immunity, 2007, 75:1359-1363.
[28] Vliegenthart J F. Carbohydrate based vaccines. FEBS letters, 2006, 580:2945-2950.
[29] Peeters C C, Tenbergen-Meekes A M, Poolman J T, et al. Immunogenicity of a streptococcus pneumoniae type 4 polysaccharide——protein conjugate vaccine is decreased by admixture of high doses of free saccharide. Vaccine, 1992, 10:833-840.
[30] Paoletti L C, Kasper D L, Michon F, et al. Effects of chain length on the immunogenicity in rabbits of group b streptococcus type iii oligosaccharide-tetanus toxoid conjugates. The Journal of Clinical Investigation, 1992, 89:203-209.
[31] Benaissa-Trouw B, Lefeber D J, Kamerling J P, et al. Synthetic polysaccharide type 3-related di-, tri-, and tetrasaccharide-crm(197) conjugates induce protection against streptococcus pneumoniae type 3 in mice. Infection and Immunity, 2001, 69:4698-4701.
[32] Schwarz F, Huang W, Li C, et al. A combined method for producing homogeneous glycoproteins with eukaryotic n-glycosylation. Nature Chemical Biology, 2010, 6:264-266.
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 程旭,杨雨睛,吴赛男,侯勤龙,李咏梅,韩慧明. 金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 41-50.
[6] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[7] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[8] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[9] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[10] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[11] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[12] 胡立强, 郑文, 钟艺, 杜丹, 杨浩, 龚萌. 抗病毒蛋白RC28在大肠杆菌和毕赤酵母中的表达及活性比较[J]. 中国生物工程杂志, 2017, 37(1): 14-20.
[13] 张宇萌, 童梅, 陆小冬, 米月, 莫婷, 刘金毅, 姚文兵. 大肠杆菌可溶性表达抗TNF-α Fab的工艺优化[J]. 中国生物工程杂志, 2016, 36(9): 31-37.
[14] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[15] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.