Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (7): 41-50    DOI: 10.13523/j.cb.2001070
技术与方法     
金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *
程旭1,杨雨睛1,吴赛男1,侯勤龙1,2,李咏梅1,2,**(),韩慧明1,2,**()
1 北华大学医学院 吉林 132013
2 北华大学医学院感染与免疫研究中心 吉林 132013
Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response
CHENG Xu1,YANG Yu-qing1,WU Sai-nan1,HOU Qin-long1,2,LI Yong-mei1,2,**(),HAN Hui-ming1,2,**()
1 Medical College of Beihua University, Jilin 132013, China
2 Center for Infection and Immunity Medical College of Beihua University, Jilin 132013, China
 全文: PDF(1660 KB)   HTML
摘要:

目的:探究SarA-AG、IcaA-AG及IcaA-SarA-AG(Azami Green用AG表示)融合基因的DNA疫苗及对小鼠免疫应答的影响。方法:以金黄色葡萄球菌基因组为模板,通过PCR等反应进行SarA-AG、IcaA-AG及IcaA-SarA-AG融合基因DNA疫苗的构建,将DNA疫苗转染至HeLa细胞,荧光显微镜下观察DNA疫苗的瞬时表达情况,将转染成功2周后的细胞进行基因组提取,PCR检测质粒在染色体上的整合情况。使用AG、SarA-AG(A组)、IcaA-AG(B组)及IcaA-SarA-AG(C组)4组免疫BALB/c小鼠,应用ELISA试剂盒检测小鼠血清中IgG抗体、IL-2、IL-4、IL-13、IFN-γ及TNF-α的分泌情况。结果:成功构建SarA-AG、IcaA-AG及IcaA-SarA-AG融合基因DNA疫苗,荧光显微镜下观察DNA疫苗转染情况,结果显示有绿色荧光。提取细胞基因组PCR检测结果显示未出现目的基因条带。免疫小鼠后,A、B、C组均能够诱导小鼠产生较高水平的IgG抗体。与空白组及空载体AG组相比,A、B组均能分泌较高水平的IL-2(P<0.001)、IFN-γ(P<0.001)、TNF-α(P<0.001)、IL-4(P<0. 01)及IL-13(P<0. 01),而C组TNF-α(P<0.05)、IL-4(P<0. 05)及IL-13(P<0. 05)分泌较少,但差异有统计学意义,细胞因子的分泌随着免疫次数的增加,差异显著增加。空白组及空载体AG组细胞因子无显著差异。结论:成功构建SarA-AG、IcaA-AG及IcaA-SarA-AG融合基因的DNA疫苗,且成功在真核细胞中表达。PCR验证结果证实了DNA疫苗的安全性。DNA疫苗免疫小鼠后可诱导体液免疫应答和以Th1细胞为主的细胞免疫应答,具有较好的应用前景。

关键词: DNA疫苗真核表达免疫效果    
Abstract:

Objective: To investigate the effects of DNA vaccines on the fusion genes of SarA-Azami Green, IcaA-Azami Green, and IcaA-SarA-Azami Green (subsequently Azami Green was represented by AG) and their immune responses in mice.Method:Using the genome of S.aureus as a template, a series of reactions including SarA-AG, IcaA-AG, and IcaA-SarA-AG fusion DNA vaccines were constructed through a series of reactions such as PCR amplification, digestion, and ligation. After transfection into HeLa cells, the transient expression of DNA vaccine was observed under a fluorescent microscope. The cells after two weeks of successful transfection were subjected to genome extraction, and the integration of plasmids on chromosomes was detected by PCR. Recombinant plasmids were extracted using endotoxin-free plasmid extraction kits. BALB / c mice were immunized with AG, SarA-AG, IcaA-AG, and IcaA-SarA-AG. ELISA kits were used to detect mouse IgG antibodies, IL-2, IL-4, IL-13, IFN-γ and TNF-α secretion.Results: SarA-AG, IcaA-AG and IcaA-SarA-AG fusion gene DNA vaccines were successfully constructed. The transfection of the fusion gene DNA vaccine was observed under a fluorescence microscope, and the results showed green fluorescence. Genomic PCR results of the extracted cells showed that the target gene band did not appear. After immunizing mice, SarA-AG, IcaA-AG and IcaA-SarA-AG were able to induce mice to produce higher levels of IgG antibodies. Compared with the blank group and the empty vector AG group, the SarA-AG and IcaA-AG groups were able to secrete higher levels of IL-2 (P<0.001), IFN-γ (P<0.001), and TNF-α (P< 0.001), IL-4 (P<0. 01) and IL-13 (P<0. 01), while IcaA-SarA-AG group TNF-α (P<0.05), IL-4 (P<0. 05)) And IL-13 (P<0.05) were less secreted, but the difference was statistically significant. The secretion of cytokines increased significantly with the increase in the number of immunizations. There was no significant difference in cytokines between the blank group and the empty vector AG group.Conclusion: The DNA vaccines of SarA-AG, IcaA-AG and IcaA-SarA-AG fusion genes were successfully constructed and successfully expressed in eukaryotic cells. PCR verification results confirmed the safety of the DNA vaccine. DNA vaccine can induce humoral immune response and Th1 cell-based cellular immune response after immunizing mice, which has a good application prospect.

Key words: DNA vaccine    Eukaryotic expression    Immune effect
收稿日期: 2020-01-21 出版日期: 2020-08-13
ZTFLH:  Q812  
基金资助: * 吉林省科技厅资助项目(20180101142J)
通讯作者: 李咏梅,韩慧明     E-mail: huiminghan@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程旭
杨雨睛
吴赛男
侯勤龙
李咏梅
韩慧明

引用本文:

程旭,杨雨睛,吴赛男,侯勤龙,李咏梅,韩慧明. 金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 41-50.

CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response. China Biotechnology, 2020, 40(7): 41-50.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2001070        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I7/41

引物 序列 (5'-3')
SarA-BamHI-F(P1) CGCGGATCCATGGCAATTACAAAAATCAATG
SarA-XhoI-R(P2) CCGCTCGAGTCATTTATTTACTCGACTCAAT
IcaA-BamHI-F(P3) CGCGGATCCATGCAATTTTTTAACTTTTTGC
IcaA-XhoI-R(P4) CCGCTCGAGTTAGCGTTGGGTATTCC
SarA-Fusion-F(P5) CCCAACGCTAAATGGCAATTAC
IcaA-Fusion-R(P6) GTAATTGCCATTTAGCGTTGGG
表1  引物序列
成分 用量
基因组模板 2.0μl
SarA-BamHI-F 2.0μl
SarA-XhoI-R 2.0μl
dNTP(2.5mmol/L each) 5.0μl
10×pfu buffer 5.0μl
Pfu 酶 2.0μl
32.0 μl
表2  SarA基因扩增体系
图1  SarA、IcaA、IcaA-SarA基因PCR结果图
图2  T载体重组质粒菌液PCR结果图
图3  T载体重组质粒双酶切鉴定结果图
图4  T载体重组质粒测序结果
图5  真核重组质粒双酶切鉴定结果图
图6  DNA疫苗细胞转染结果图
图7  PCR检测DNA疫苗安全性结果图
图8  小鼠血清IgG抗体水平检测
图9  小鼠血清细胞因子检测
[1] Derek T, Singh M, Ulmer J B. Microparticle-based technologies for vaccines. Methods, 2006,40(1):10-19.
pmid: 16997709
[2] 杨海, 王芳宇. DNA疫苗的研究进展. 中国畜牧兽医, 2013,40(1):72-76.
Yang H, Wang F Y. Research progress of DNA vaccines. China Animal Husbandry and Veterinary Medicine, 2013,40(1):72-76.
[3] Chen Y, Liu T J, Wang K, et al. Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One, 2016,11(4):e0153468.
pmid: 27128436
[4] 施德仕, 邵海枫. 细菌生物膜感染的研究进展. 医学研究生学报, 2011,24(12):1319-1323.
Shi D S, Shao H F. Research progress on bacterial biofilm infections. Journal of Medical Postgraduates, 2011,24(12):1319-1323.
[5] Gordon R J, Lowy F D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clinical Infectious Diseases, 2008,46(Supplement 5):S350-S359.
doi: 10.1086/589846
[6] 李曈曈, 唐佩福. 金黄色葡萄球菌生物膜形成与调控的研究进展. 中华医院感染学杂志, 2017,27(7):1673-1676.
Li T T, Tang P F. Research progress on the formation and regulation of Staphylococcus aureus biofilms. Chinese Journal of Hospital Infectious Diseases, 2017,27(7):1673-1676.
[7] Chowdhary D, Tahir S, Legge M, et al. Transfer of dry surface biofilm in healthcare environment: the role of healthcare worker’s hands as vehicles. J Hosp Infect, 2018,100(3):e85-e90.
pmid: 29964099
[8] Arciola C R, Campoccia D, Ravaioli S, et al. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in Cellular and Infection Microbiology, 2015,5(7).DOI: 10.3389/fcimb.2015.00007.
doi: 10.3389/fcimb.2015.00007
[9] Vuong C, Voyich J M, Fischer E R, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cellular Microbiology, 2004,6(3):269-275.
pmid: 14764110
[10] Heilmann C, Schweitzer O, Gerke C, et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Molecular Microbiology, 1996,20(5):1083-1091.
doi: 10.1111/j.1365-2958.1996.tb02548.x pmid: 8809760
[11] Gerke C, Kraft A, Süssmuth R, et al. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem, 1998,273(29):18586-18593.
doi: 10.1074/jbc.273.29.18586 pmid: 9660830
[12] Blevins J S, Elasri M O, Allmendinger S D, et al. Role of SarA in the pathogenesis of Staphylococcus aureus musculoskeletal infection. Infect Immun, 2003,71(1):516-523.
doi: 10.1128/iai.71.1.516-523.2003 pmid: 12496203
[13] Fitzpatrick F, Humphreys H, O’Gara J P.Evidence for IcaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol, 2005,43(4):1973-1976.
doi: 10.1128/JCM.43.4.1973-1976.2005 pmid: 15815035
[14] Cue D, Lei M G, Lee C Y. Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol, 2012,2:38.
doi: 10.3389/fcimb.2012.00038 pmid: 23061050
[15] 王晓红, 于录, 刘丽慧, 等. 桃柁酚对金黄色葡萄球菌生物膜及IcaA表达的抑制作用. 中国兽医科学, 2012,42(7):753-757.
Wang X H, Yu L, Liu L H, et al. Inhibition of taurophenol on S. aureus biofilm and IcaA expression. Chinese Veterinary Science, 2012,42(7):753-757.
[16] Buchbinder E I, Dutcher J P, Daniels G A, et al. Therapy with high-dose Interleukin-2 (HD IL-2) in metastatic melanoma and renal cell carcinoma following PD1 or PDL1 inhibition. Journal for ImmunoTherapy of Cancer, 2019,7(1).DOI: 10.1186/s40425-019-0522-3.
doi: 10.1186/s40425-019-0522-3 pmid: 31801591
[17] 赵占中, 薛飞群. DNA疫苗的免疫佐剂. 中国动物传染病学报, 2010,18(2):79-86.
Zhao Z H, Xue F Q. Immune adjuvant for DNA vaccines. Chinese Journal of Animal Infectious Diseases, 2010,18(2):79-86.
[18] 鲜思美, 李鹏飞, 冯将, 等. 羊IL-2基因和羊口疮病毒B2L基因真核表达重组质粒联合免疫小鼠的效果评价. 中国预防兽医学报, 2017,39(8):663-667.
Xian S M, Li P F, Feng J, et al. Evaluation of the effect of sheep IL-2 gene and sheep aphthosis virus B2L gene eukaryotic expression recombinant plasmid combined immunization on mice. Chinese Journal of Preventive Veterinary Medicine, 2017,39(8):663-667.
[19] Salek-Ardakani S, Croft M. Tumor necrosis factor receptor/tumor necrosis factor family members in antiviral CD8 T-cell immunity. Journal of Interferon Cytokine Research, 2010,30(4):205-218.
doi: 10.1089/jir.2010.0026 pmid: 20377415
[1] 孙思,邱喻兰,颜菊荣,杨静,吴光英,王玲,胥文春. 重组质粒pcDNA3-dnaJ/蛋白DnaJ异源免疫诱导Th1和Th17细胞免疫应答抵抗肺炎链球菌感染 *[J]. 中国生物工程杂志, 2019, 39(12): 9-17.
[2] 郎巧利,余琳,何麒麟,葛良鹏,杨希. 高效构建卵清白蛋白scFv噬菌体文库及其筛选 *[J]. 中国生物工程杂志, 2018, 38(11): 25-31.
[3] 王青, 徐彦召, 魏晓晓, 王秋霞, 杭柏林, 孙亚伟, 王飞飞, 胡建和. 猪繁殖与呼吸综合征病毒GP5a多克隆抗血清的制备[J]. 中国生物工程杂志, 2015, 35(8): 38-43.
[4] 王金胜, 姜浩武, 张晋霞, 潘磊, 赵凤芝, 于云飞, 蔡亚雄, 邓宁. 抗FGF2人鼠嵌合抗体在HEK293T细胞中的表达优化[J]. 中国生物工程杂志, 2014, 34(5): 14-22.
[5] 庞敏, 王海龙, 郭民, 郭睿. 人ANKRD49基因真核表达载体的构建及其功能的初步研究和RNA干扰靶点的鉴定[J]. 中国生物工程杂志, 2014, 34(10): 15-21.
[6] 袁颖烁, 宋菲菲, 刘国强, 刘晔, 张守峰, 张乐萃, 扈荣良. 犬瘟热病毒H蛋白基因重组腺病毒的构建及免疫效果评估[J]. 中国生物工程杂志, 2014, 34(1): 64-70.
[7] 张标, 佟琳, 易山, 张光明, 李鸿钧, 孙茂盛, 陈东. 轮状病毒灭活疫苗和减毒活疫苗序贯免疫的体液免疫应答效果[J]. 中国生物工程杂志, 2013, 33(2): 14-20.
[8] 马中瑞, 韩东雷, 赵骏菲, 陈梦琳, 陈敏. 利用大肠杆菌生产N-糖蛋白和糖蛋白疫苗的研究进展[J]. 中国生物工程杂志, 2013, 33(11): 92-98.
[9] 刘玉芬, 冬黎黎, 孙玉刚, 刘鹏, 陈辉, 赵文阁. 中介蝮蛇毒纤溶酶基因真核表达载体的构建及其功能的研究[J]. 中国生物工程杂志, 2012, 32(10): 1-6.
[10] 徐文琦, 柴晓杰, 张婷, 代靖宇, 张晓琳. 胰蛋白酶抑制剂KSTI3基因新型真核表达载体的构建及其在盐藻中的表达[J]. 中国生物工程杂志, 2011, 31(8): 29-34.
[11] 方静, 周颖, 李智慧, 达飞, 胡要磊, 毛建平. 小鼠淋巴细胞抗原CTLA-4的胞外肽段表达及纯化[J]. 中国生物工程杂志, 2010, 30(11): 61-64.
[12] 钟一维 李金耀 耿爽 王宾. 鉴定免疫细胞中DNA疫苗结合蛋白[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[13] 钟一维, 李金耀, 耿爽, 王宾. 鉴定免疫细胞中DNA疫苗结合蛋白[J]. 中国生物工程杂志, 2010, 30(10): 12-16.
[14] 张继文 杨桂连 王春凤. 逆转录病毒载体在基因工程疫苗方面的应用[J]. 中国生物工程杂志, 2010, 30(06): 130-133.
[15] 王正茂 李琳 管文燕 李越希. 真核细胞表达单纯疱疹病毒I型包膜糖蛋白B及其抗原性与免疫原性分析[J]. 中国生物工程杂志, 2010, 30(06): 8-13.