Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (6): 124-133    DOI: 10.13523/j.cb.20170618
综述     
微生物利用木质纤维素的研究进展
马泽林1,2,3, 刘家亨1,2,3, 黄序4, 财音青格乐1,2, 朱宏吉1,2
1. 天津大学化工学院 天津 300072;
2. 系统生物工程教育部重点实验室 天津 300072;
3. 天津化学化工协同创新中心合成生物学平台 天津 300072;
4. 中粮营养健康研究院 北京 102209
Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms
MA Ze-lin1,2,3, LIU Jia-heng1,2,3, HUANG Xu4, CAIYIN Qing-gele1,2, ZHU Hong-ji1,2
1. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;
3. Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China;
4. China Oil & Foodstuffs Corporation(COFCO Nutrition and Health Research Institute, Beijing 102209, China
 全文: PDF(603 KB)   HTML
摘要: 木质纤维素原料是世界上最为丰富的资源之一,可用作微生物发酵生产高附加值生物化学品的原料。与传统用于微生物发酵的可食用生物质原料相比,目前微生物利用木质纤维素还存在以下几个关键问题:开发经济有效的木质纤维素预处理工艺、提高微生物对木质纤维素水解液中第二大单糖木糖的有效利用水平、增强微生物对木质纤维素水解液中混糖的综合利用能力以及提高微生物对木质纤维素水解液中糠醛、乙酸等发酵抑制物的耐受能力。综述了近年来国内外针对这几个关键问题的最新研究成果。为今后微生物大规模利用木质纤维素进行商业生产提出了展望和建议。
关键词: 木质纤维素碳代谢抑制化学品木糖耐受性    
Abstract: Lignocellulosic biomass, one of the most abundant resources in the world can be converted into value-added bio-chemicals by microbial fermentation. Compared with the traditionally used edible biomass materials, lignocelluloses fermentation by microorganism encounters the following key problems:developing economically efficient pretreatment of lignocellulose, increasing the microbial utilization of the second most abundant sugar xylose in lignocellulose hydrolysates, enhancing the microbial comprehensive utilization of mixed sugars and improving the microbial tolerance to inhibitors in lignocellulose hydrolysates, such as furfural and acetic acid. New breakthroughs have been made on the research of these problems recent years. The latest research advances were summarized to address these issues and prospects for future development of commercial microbial utilization of lignocellulose were suggested.
Key words: Lignocellulose    Xylose    Chemicals    Carbon catabolite repression    Tolerance
收稿日期: 2017-03-20 出版日期: 2017-06-25
ZTFLH:  Q81  
基金资助: 国家自然科学基金(31540085)、国家科技支撑计划(2014BAD02B00)资助项目
通讯作者: 朱宏吉     E-mail: zhuhongji163@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄序
朱宏吉
刘家亨
财音青格乐
马泽林

引用本文:

马泽林, 刘家亨, 黄序, 财音青格乐, 朱宏吉. 微生物利用木质纤维素的研究进展[J]. 中国生物工程杂志, 2017, 37(6): 124-133.

MA Ze-lin, LIU Jia-heng, HUANG Xu, CAIYIN Qing-gele, ZHU Hong-ji. Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms. China Biotechnology, 2017, 37(6): 124-133.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170618        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I6/124

[1] Graham-Rowe D. Agriculture:Beyond food versus fuel. Nature, 2011, 474(7352):S6-S8.
[2] 李景明, 薛梅. 中国生物质能利用现状与发展前景. 农业科技管理, 2010, 29(2):1-4. Li J M, Xue M. Present situation and prospect of biomass energy utilization in China. Management of Agricultural Science and Technology, 2010, 29(2):1-4.
[3] Li C, Cheng G, Balan V, et al. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology, 2011, 102(13):6928-6936.
[4] Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 2005, 96(6):673-686.
[5] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource Technology, 2002, 83(1):1-11.
[6] Papapetridis I, Dijk M, Dobbe A P, et al. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microbial Cell Factories, 2016, 15(1):67-83.
[7] Shaw A J, Podkaminer K K, Desai S G, et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proceedings of the National Academy of Sciences, 2008, 105(37):13769-13774.
[8] Gao D, Chundawat S P, Sethi A, et al. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proceedings of the National Academy of Sciences, 2013, 110(27):10922-10927.
[9] Edwards M C, Henriksen E D, Yomano L P, et al. Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomas. Applied and Environmental Microbiology, 2011, 77(15):5184-5191.
[10] Galbe M, Zacchi G. Pretreatment:the key to efficient utilization of lignocellulosic materials. Biomass and Bioenergy, 2012, 46(12):70-78.
[11] Viikari L, Vehmaanperä J, Koivula A. Lignocellulosic ethanol:from science to industry. Biomass and Bioenergy, 2012, 46(11):13-24.
[12] Ravindran R, Jaiswal A K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste:challenges and opportunities. Bioresource Technology, 2016, 1(199):92-102.
[13] Qiao J J, Zhang Y F, Sun L F, et al. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment. Bioresource Technology, 2011, 102(17):8046-8051.
[14] Zhu H J, Liu J H, Sun L F, et al. Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production. Bioresource Technology, 2013, 136(5):257-266.
[15] 赵鑫. 木质纤维素联合预处理法的研究进展. 山东化工, 2016, 45(11):39-41. Zhao X. The Review of combination pretreatment methods of lignocellulosic. Shandong Chemical Industry, 2016,45(11):39-41.
[16] Vanneste J, Ennaert T, Vanhulsel A, et al. Unconventional Pretreatment of lignocellulose with low temperature plasma. ChemSusChem, 2017,10(1):14-31.
[17] Nogué V S, Karhumaa K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters, 2015, 37(4):761-772.
[18] Bundaleska N, Tatarova E, Dias F M, et al. Air-water 'tornado'-type microwave plasmas applied for sugarcane biomass treatment. Journal of Physics D:Applied Physics, 2013, 47(5):055201.
[19] Benoit M, Rodrigues A, Vigier K D, et al. Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose. Green Chemistry, 2012, 14(8):2212-2215.
[20] Travaini R, Martín-Juárez J, Lorenzo-Hernando A, et al. Ozonolysis:An advantageous pretreatment for lignocellulosic biomass revisited. Bioresource Technology, 2016, 199(1):2-12.
[21] Li C, Wang L, Chen Z, et al. Ozonolysis pretreatment of maize stover:The interactive effect of sample particle size and moisture on ozonolysis process. Bioresource Technology, 2015, 183(5):240-247.
[22] Bule M V, Gao A H, Hiscox B, et al. Structural modification of lignin and characterization of pretreated wheat straw by ozonation. Journal of Agricultural and Food Chemistry, 2013, 61(16):3916-3925.
[23] Amorim J, Oliveira C, Souza-Corrêa J A, et al. Treatment of sugarcane bagasse lignin employing atmospheric pressure microplasma jet in argon. Plasma Processes and Polymers, 2013, 10(8):670-678.
[24] Wiman M, Dienes D, Hansen M A, et al. Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Bioresource Technology, 2012, 126(12):208-215.
[25] Rana V, Eckard A D, Teller P, et al. On-site enzymes produced from Trichoderma reesei RUT- C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresource Technology, 2014, 154(2):282-289.
[26] Nghiem N P, Kim T H, Yoo C G, et al. Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product. Applied Biochemistry and Biotechnology, 2013, 171(2):341-351.
[27] Han S H, Cho D H, Kim Y H, et al. Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone-butanol-ethanol fermentation. Energy, 2013, 61(11):13-17.
[28] Zeng A P, Sabra W. Microbial production of diols as platform chemicals:recent progresses. Current Opinion in Biotechnology, 2011, 22(6):749-757.
[29] Kuhad R C, Gupta R, Khasa Y P, et al. Bioethanol production from pentose sugars:Current status and future prospects. Renewable and Sustainable Energy Reviews, 2011, 15(9):4950-4962.
[30] Scalcinati G, Otero J M, Van Vleet J R, et al. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Research, 2012, 12(5):582-597.
[31] Tanaka K, Komiyama A, Sonomoto K, et al. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO- 1. Applied Microbiology and Biotechnology, 2002, 60(10):160-167.
[32] Chang S F, Ho N W. Cloning the yeast xylulokinase gene for the improvement of xylose fermentation. Applied Biochemistry and Biotechnology, 1988, 17(1):313-318.
[33] N lling J, Breton G, Omelchenko M V, et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. Journal of Bacteriology, 2001, 183(16):4823-4838.
[34] Jin L, Zhang H, Chen L, et al. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum. Journal of Biotechnology, 2014, 3(173):7-9.
[35] Zhou H, Cheng J, Wang B L, et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14(6):611-622.
[36] Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nature Chemical Biology, 2011, 7(7):445-452.
[37] Weimberg R. Pentose oxidation by Pseudomonas fragi. Journal of Biological Chemistry, 1961, 236(3):629-635.
[38] Radek A, Krumbach K, Gätgens J, et al. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology, 2014, 192(12):156-160.
[39] Liu H, Lu T. Autonomous production of 1, 4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metabolic Engineering, 2015, 29(5):135-141.
[40] Tai Y S, Xiong M, Jambunathan P, et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nature Chemical Biology, 2016, 12(2):247-253.
[41] Gírio F M, Carvalheiro F, Duarte L C, et al. Deconstruction of the hemicellulose fraction from lignocellulosic materials into simple sugars d-Xylitol. Berlin Heidelberg:Springer, 2012. 3-37.
[42] G rke B, Stülke J. Carbon catabolite repression in bacteria:many ways to make the most out of nutrients. Nature Reviews Microbiology, 2008, 6(8):613-624.
[43] Deutscher J, Francke C, Postma P W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Reviews, 2006, 70(4):939-1031.
[44] Jarmander J, Hallstr? m B M, Larsson G. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli. Biotechnology and Bioengineering, 2014, 111(6):1108-1115.
[45] Escalante A, Cervantes A S, Gosset G, et al. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system:peculiarities of regulation and impact on growth and product formation. Applied Microbiology and Biotechnology, 2012, 94(6):1483-1494.
[46] Nakashima N, Tamura T. A new carbon catabolite repression mutation of Escherichia coli, mlc, and its use for producing isobutanol. Journal of Bioscience and Bioengineering, 2012, 114(1):38-44.
[47] Tsakraklides V, Shaw A J, Miller B B, et al. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum. Biotechnology for Biofuels, 2012, 5(1):85.
[48] Cirino P C, Chin J W, Ingram L O. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnology and Bioengineering, 2006, 95(6):1167-1176.
[49] Groff D, Benke P I, Batth T S, et al. Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars. Applied and Environmental Microbiology, 2012, 78(7):2221-2229.
[50] Wu Y, Yang Y, Ren C, et al. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metabolic Engineering, 2015, 3(28):169-179.
[51] Jojima T, Omumasaba C A, Inui M, et al. Sugar transporters in efficient utilization of mixed sugar substrates:current knowledge and outlook. Applied Microbiology and Biotechnology, 2010, 85(3):471-480.
[52] Sun L, Zeng X, Yan C, et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature, 2012, 490(7420):361-366.
[53] Hector R E, Qureshi N, Hughes S R, et al. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Applied Microbiology and Biotechnology, 2008, 80(4):675-684.
[54] Khankal R, Chin J W, Cirino P C. Role of xylose transporters in xylitol production from engineered Escherichia coli. Journal of Biotechnology, 2008, 134(3):246-252.
[55] Jeon W Y, Yoon B H, Ko B S, et al. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess and Biosystems Engineering, 2012, 35(1-2):191-198.
[56] Almeida J R, Bertilsson M, Gorwa-Grauslund M F, et al. Metabolic effects of furaldehydes and impacts on biotechnological processes. Applied Microbiology and Biotechnology, 2009, 82(4):625.
[57] Taylor M P, Mulako I, Tuffin M, et al. Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations. Biotechnology Journal, 2012, 7(9):1169-1181.
[58] Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial Biotechnology, 2008, 1(6):497-506.
[59] Hasunuma T, Sung K, Sanda T, et al. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 90(3):997-1004.
[60] Li Y C, Gou Z X, Liu Z S, et al. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnology Letters, 2014, 36(10):2011-2021.
[61] Hasunuma T, Ismail K S, Nambu Y, et al. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Journal of Bioscience and Bioengineering, 2014, 117(2):165-169.
[62] Royce L A, Yoon J M, Chen Y, et al. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metabolic Engineering, 2015, 29(5):180-188.
[63] Wallace-Salinas V, Gorwa-Grauslund M F. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnology for Biofuels, 2013, 6(1):151.
[64] Dafoe J T, Daugulis A J. In situ product removal in fermentation systems:improved process performance and rational extractant selection. Biotechnology Letters, 2014, 36(3):443-460.
[65] Klaassen P, Kolen C, Van Maris A, et al. Yeast strains engineered to produce ethanol from acetate. Patent WO2014033019 A1. 2014-3-6.
[66] Zelle R M, Shaw I V, van Dijken J P. Method for acetate consumption during ethanolic fermentaion of cellulosic feedstocks. U.S. Patent, 14/075,846. 2013-11-8.
[67] Hou J, Shen Y, Jiao C, et al. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2016, 121(2):160-165.
[68] Meijnen J P, de Winde J H, Ruijssenaars H J. Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12. Applied and Environmental Microbiology, 2009, 75(9):2784-2791.
[69] Liu H, Ramos K R, Valdehuesa K N, et al. Biosynthesis of ethylene glycol in Escherichia coli. Applied Microbiology and Biotechnology, 2013, 97(8):3409-3417.
[70] Uppugundla N, da Costa Sousa L, Chundawat S P, et al. A comparative study of ethanol production using dilute acid, ionic liquid and AFEXTM pretreated corn stover. Biotechnology for Biofuels, 2014, 7(1):72.
[71] Hasunuma T, Ismail K S, Nambu Y, et al. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Journal of Bioscience and Bioengineering, 2014, 117(2):165-169.
[72] Smith J, Van Rensburg E, G? rgens J F. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnology, 2014, 14(1):41-58.
[73] Bai W, Tai Y S, Wang J, et al. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Metabolic Engineering, 2016, 38(11):285-292.
[74] Jeon W Y, Shim W Y, Lee S H, et al. Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioprocess and Biosystems Engineering, 2013, 36(6):809-817.
[75] Oh E J, Ha S J, Kim S R, et al. Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2013, 15(1):226-234.
[76] Nair N U, Zhao H. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metabolic Engineering, 2010, 12(5):462-468.
[77] Sasaki M, Jojima T, Inui M, et al. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, 2010, 86(4):1057-1066.
[78] Liu H, Hu H R, Jin Y H, et al. Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7-13-9# . Bioresource Technology,2017,223(6):30-33.
[79] Wei N, Quarterman J, Kim S R, et al. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nature Communications, 2013, 4(8):2580.
[80] Zhang J G, Liu X Y, He X P, et al. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnology Letters, 2011, 33(2):277-284.
[81] Heer D, Heine D, Sauer U. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Applied and Environmental Microbiology, 2009, 75(24):7631-7638.
[82] Madhavan A, Srivastava A, Kondo A, et al. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Critical Reviews in Biotechnology, 2012, 32(1):22-48.
[83] Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 2012, 5(1):14.
[84] Bellissimi E, Van Dijken J P, Pronk J T, et al. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Research, 2009, 9(3):358-364.
[1] 高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.
[2] 白京羽,林晓锋,尹政清. 基于文献计量的全球生物技术研究现状与发展趋势分析[J]. 中国生物工程杂志, 2020, 40(7): 100-109.
[3] 张野,王吉平,苏天明,何铁光,王瑾,曾向阳. 筛选微生物降解木质纤维素的研究进展[J]. 中国生物工程杂志, 2020, 40(6): 100-105.
[4] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[5] 唐馨,毛新芳,马彬云,苟萍. 抗菌肽的研究现状和挑战 *[J]. 中国生物工程杂志, 2019, 39(8): 86-94.
[6] 李佩忆,周于聪,李雅乾,陈捷. 深绿木霉中碳代谢抑制因子CRE1功能特性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 17-25.
[7] 秦梦彤,胡婧,李冠华. 生物质生物预处理研究进展与展望[J]. 中国生物工程杂志, 2018, 38(5): 85-91.
[8] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[9] 陈振, 陈献忠, 张利华, 王均华, 沈微, 樊游. 代谢改造热带假丝酵母发酵木糖母液生产木糖醇[J]. 中国生物工程杂志, 2017, 37(5): 66-75.
[10] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[11] 陈大明, 刘晓, 毛开云, 熊燕. 合成生物学应用产品开发现状与趋势[J]. 中国生物工程杂志, 2016, 36(7): 117-126.
[12] 陈方, 丁陈君, 陈云伟, 郑颖, 邓勇, 徐萍, 于建荣, 吴林寰, 马俊才, 曾艳, 刘斌. 中国工业生物技术发展态势分析与展望[J]. 中国生物工程杂志, 2016, 36(5): 1-11.
[13] 曹莹莹, 邓盾, 张云, 孙爱君, 夏方亮, 胡云峰. 南海深海新颖低温脂肪酶的克隆、表达及酶学性质鉴定[J]. 中国生物工程杂志, 2016, 36(3): 43-52.
[14] 刘宝利, 刘高冈, 林秋卉, 李炳志, 元英进. 多质粒共转化组合筛选方法构建木糖利用酿酒酵母的研究[J]. 中国生物工程杂志, 2016, 36(12): 86-97.
[15] 公颜慧, 马三梅, 张云, 王永飞, 胡云峰. 新颖微生物低温酯酶EstP8的酶学性质研究与在手性催化中的应用[J]. 中国生物工程杂志, 2016, 36(10): 35-44.