Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (5): 105-113    DOI: 10.13523/j.cb.2101019
综述     
衣康酸发酵研究进展
高寅岭,张凤娇,赵贵众,张宏森,王风芹(),宋安东
河南农业大学生命科学学院 农业部农业微生物酶工程重点实验室 郑州 450002
Research Progress of Itaconic Acid Fermentation
GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin(),SONG An-dong
College of Life Sciences, Henan Agriculture University, Zhengzhou 450002, China
 全文: PDF(563 KB)   HTML
摘要:

衣康酸作为一种平台化合物,可被各行业广泛用于多种高附加值产品的生产,其更是具有替代传统石油基原料的潜力,在工业生产中有着重要地位与应用前景。目前,衣康酸主要由土曲霉深层好氧发酵生产,碳源、氮源、磷酸盐、金属离子、溶解氧、pH、温度等条件对其产量影响显著。在衣康酸生产中,原料成本高是阻碍其市场进一步扩大与发展的重要因素。木质纤维素原料来源广泛、价格低廉,是理想的低成本碳源底物。研究利用木质纤维素水解液作为替代碳源生产衣康酸有望降低生产成本,对推动其发展应用具有重要意义。

关键词: 衣康酸土曲霉发酵生产木质纤维素    
Abstract:

Itaconic acid, a platform chemical, can be widely applied in various industries for kinds of high value-added products. It is one of the potential alternatives to the traditional petroleum-based material, which has an important position and application prospect in industrial production. At present, itaconic acid is mainly produced by submerged fermentation by Aspergillus terreus. A number of parameters have significant influence on the yield of itaconic acid, such as carbon source, nitrogen source, phosphate, metal ion, dissolved oxygen, pH, and temperature. The high cost of raw material is a crucial factor which impedes the expansion and development of the itaconic acid market in industrial production. Lignocellulose is a widely available and a promising low-cost substrate. The research of lignocellulosic hydrolysate as a substitute carbon source to produce itaconic acid is expected to reduce the production cost, which is of great significance to promote the development and application of itaconic acid.

Key words: Itaconic acid    Aspergillus terreus    Fermentation    Lignocellulose
收稿日期: 2021-01-15 出版日期: 2021-06-01
ZTFLH:  Q819  
通讯作者: 王风芹     E-mail: w_fengqin@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高寅岭
张凤娇
赵贵众
张宏森
王风芹
宋安东

引用本文:

高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.

GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation. China Biotechnology, 2021, 41(5): 105-113.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2101019        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I5/105

Microorganism Substrate Production
/(g/L)
Yield
/(g/g)
Productivity
/[g/(L·h)]
System Ref.
A. terreus NRRL 1960 glucose 130 - - BF [2]
glucose 73.6 - - BF [25]
xylose 53.97 0.63 - BF [26]
A. terreus NRRL 1962 glucose 43.5 - 0.26 SF [27]
xylose 31.6 - 0.19
arabinose 16.7 - 0.10
A. terreus DSM 23081 glucose 92.4 0.53 - SF [28]
86.5 0.54 0.62 BF
glucose 129 0.58 1.15 BF [11]
glucose 160 0.46 0.99 BF [9]
A. terreus NRRL 1971 glucose 42.6 - - SF [29]
xylose 30.5 -
mannose 36.4 0.41 -
arabinose 25.8 - -
A. terreus CECT 20365 glucose 30.2 - - SF [30]
glycerol 26.9 - -
A. terreus MJL05 glycerol 27.6 0.44 0.192 BF [31]
U. maydis MB 215 glucose 220 0.45 0.73 BF [14]
U. vetiveriae TZ1 glycerol 34.7 0.18 0.09 SF [32]
Candidia sp. B-1 glucose 35 0.35 - SF [18]
A. niger glucose 26.2 - 0.35 BF [33]
E. coli glucose 4.34 - - BF [20]
E. coli glucose 2.27 0.77 - SF [34]
32 0.68 - BF
Yarrowia lipolytica glucose 4.6 0.058 0.045 BF [23]
Corynebacterium glutamicum glucose 7.8 0.4 0.002 1 SF [35]
表1  部分已报道菌株的衣康酸产量
图1  玉米黑粉菌(a)和土曲霉(b)衣康酸代谢途径简化图([36, 38-40]) (图部分内容参考自Kuenz等[41])
[1] Okabe M, Lies D, Kanamasa S, et al. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Applied Microbiology and Biotechnology, 2009,84(4):597-606.
doi: 10.1007/s00253-009-2132-3
[2] Karaffa L, Díaz R, Papp B, et al. A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Applied Microbiology and Biotechnology, 2015,99(19):7937-7944.
doi: 10.1007/s00253-015-6735-6
[3] Choi S, Song C W, Shin J H, et al. Biorefineries for the production of top building block chemicals and their derivatives. Metabolic Engineering, 2015,28:223-239.
doi: 10.1016/j.ymben.2014.12.007 pmid: 25576747
[4] Sethy B, Hsieh C F, Lin T J, et al. Design, synthesis, and biological evaluation of itaconic acid derivatives as potential anti-influenza agents. Journal of Medicinal Chemistry, 2019,62(5):2390-2403.
doi: 10.1021/acs.jmedchem.8b01683
[5] Weiss J M, Davies L C, Karwan M, et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. The Journal of Clinical Investigation, 2018,128(9):3794-3805.
doi: 10.1172/JCI99169
[6] Michelucci A, Cordes T, Ghelfi J, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(19):7820-7825.
[7] Geilen F, Engendahl B, Harwardt A, et al. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angewandte Chemie International Edition, 2010,49(32):5510-5514.
doi: 10.1002/anie.201002060
[8] Du C, Ahmed A. Fermentative itaconic acid production. Journal of Biodiversity, Bioprospecting and Development, 2014,1(2):1000119.
[9] Krull S, Hevekerl A, Kuenz A, et al. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Applied Microbiology and Biotechnology, 2017,101(10):4063-4072.
doi: 10.1007/s00253-017-8192-x
[10] Bafana R, Pandey R A. New approaches for itaconic acid production: bottlenecks and possible remedies. Critical Reviews in Biotechnology, 2018,38(1):68-82.
doi: 10.1080/07388551.2017.1312268 pmid: 28425297
[11] Hevekerl A, Kuenz A, Vorlop K D. Influence of the pH on the itaconic acid production with Aspergillus terreus. Applied Microbiology and Biotechnology, 2014,98(24):10005-10012.
doi: 10.1007/s00253-014-6047-2 pmid: 25213913
[12] Saha B C. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. Journal of Industrial Microbiology & Biotechnology, 2017,44(2):303-315.
[13] Geiser E, Wiebach V, Wierckx N, et al. Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biology and Biotechnology, 2014,1(1):1-10.
doi: 10.1186/s40694-014-0001-z
[14] Hosseinpour Tehrani H, Becker J, Bator I, et al. Integrated strain- and process design enable production of 220 g L-1 itaconic acid with Ustilago maydis. Biotechnology for Biofuels, 2019,12(1):1-11.
doi: 10.1186/s13068-018-1346-y
[15] van der Straat L, Vernooij M, Lammers M, et al. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microbial Cell Factories, 2014,13:11.
doi: 10.1186/1475-2859-13-11
[16] Hossain A H, van Gerven R, Overkamp K M, et al. Metabolic engineering with ATP-citrate lyase and nitrogen source supplementation improves itaconic acid production in Aspergillus niger. Biotechnology for Biofuels, 2019,12:233.
doi: 10.1186/s13068-019-1577-6
[17] Blumhoff M L, Steiger M G, Mattanovich D, et al. Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger. Metabolic Engineering, 2013,19:26-32.
doi: 10.1016/j.ymben.2013.05.003 pmid: 23727192
[18] Tabuchi T, Sugisawa T, Ishidori T, et al. Itaconic acid fermentation by a yeast belonging to the genus Candida. Agricultural and Biological Chemistry, 1981,45(2):475-479.
[19] Levinson W E, Kurtzman C P, Kuo T M. Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme and Microbial Technology, 2006,39(4):824-827.
doi: 10.1016/j.enzmictec.2006.01.005
[20] Okamoto S, Chin T, Hiratsuka K, et al. Production of itaconic acid using metabolically engineered Escherichia coli. The Journal of General and Applied Microbiology, 2014,60(5):191-197.
doi: 10.2323/jgam.60.191
[21] Tran K N T, Somasundaram S, Eom G T, et al. Efficient Itaconic acid production via protein-protein scaffold introduction between GltA, AcnA, and CadA in recombinant Escherichia coli. Biotechnology Progress, 2019,35(3):e2799.
[22] Sun W, Vila-Santa A, Liu N, et al. Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metabolic Engineering Communications, 2020,10:e00124.
doi: 10.1016/j.mec.2020.e00124
[23] Blazeck J, Hill A, Jamoussi M, et al. Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metabolic Engineering, 2015,32:66-73.
doi: S1096-7176(15)00115-9 pmid: 26384571
[24] Luo G, Fujino M, Nakano S, et al. Accelerating itaconic acid production by increasing membrane permeability of whole-cell biocatalyst based on a psychrophilic bacterium Shewanella livingstonensis Ac10. Journal of Biotechnology, 2020,312:56-62.
doi: 10.1016/j.jbiotec.2020.03.003
[25] Molnár Á P, Németh Z, Kolláth I S, et al. High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus. Applied Microbiology and Biotechnology, 2018,102(20):8799-8808.
doi: 10.1007/s00253-018-9325-6 pmid: 30141084
[26] Kolláth I S, Molnár Á P, Soós Á, et al. Manganese deficiency is required for high itaconic acid production from D-xylose in Aspergillus terreus. Frontiers in Microbiology, 2019,10:1589.
doi: 10.3389/fmicb.2019.01589 pmid: 31338087
[27] Saha B C, Kennedy G J, Qureshi N, et al. Production of itaconic acid from pentose sugars by Aspergillus terreus. Biotechnology Progress, 2017,33(4):1059-1067.
doi: 10.1002/btpr.2485
[28] Hevekerl A, Kuenz A, Vorlop K D. Filamentous fungi in microtiter plates:an easy way to optimize itaconic acid production with Aspergillus terreus. Applied Microbiology and Biotechnology, 2014,98(16):6983-6989.
doi: 10.1007/s00253-014-5743-2 pmid: 24737061
[29] Saha B C, Kennedy G J. Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus. Letters in Applied Microbiology, 2017,65(6):527-533.
doi: 10.1111/lam.12810 pmid: 28977696
[30] Vassilev N, Medina A, Eichler-Löbermann B, et al. Animal bone char solubilization with itaconic acid produced by free and immobilized Aspergillus terreus grown on glycerol-based medium. Applied Biochemistry and Biotechnology, 2012,168(5):1311-1318.
doi: 10.1007/s12010-012-9859-5 pmid: 22956279
[31] Juy M, Orejas J, Me L. Study of itaconic acid production by Aspergillus terrus MJL05 strain with different variable. Revista Colombiana De Biotecnología, 2010,7:187-193
[32] Zambanini T, Hosseinpour Tehrani H, Geiser E, et al. Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnology for Biofuels, 2017,10:131.
doi: 10.1186/s13068-017-0809-x
[33] Hossain A H, Li A, Brickwedde A, et al. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microbial Cell Factories, 2016,15(1):130.
doi: 10.1186/s12934-016-0527-2
[34] Harder B J, Bettenbrock K, Klamt S. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metabolic Engineering, 2016,38:29-37.
doi: 10.1016/j.ymben.2016.05.008
[35] Otten A, Brocker M, Bott M. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metabolic Engineering, 2015,30:156-165.
doi: 10.1016/j.ymben.2015.06.003
[36] Bonnarme P, Gillet B, Sepulchre A M, et al. Itaconate biosynthesis in Aspergillus terreus. Journal of Bacteriology, 1995,177(12):3573-3578.
doi: 10.1128/JB.177.12.3573-3578.1995
[37] Steiger M G, Blumhoff M L, Mattanovich D, et al. Biochemistry of microbial itaconic acid production. Frontiers in Microbiology, 2013,4:23.
[38] Li A, van Luijk N, ter Beek M, et al. A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genetics and Biology, 2011,48(6):602-611.
doi: 10.1016/j.fgb.2011.01.013
[39] Geiser E, Przybilla S K, Friedrich A, et al. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microbial Biotechnology, 2016,9(1):116-126.
doi: 10.1111/1751-7915.12329 pmid: 26639528
[40] Jaklitsch W M, Kubicek C P, Scrutton M C. The subcellular organization of itaconate biosynthesis in Aspergillus terreus. Journal of General Microbiology, 1991,137(3):533-539.
doi: 10.1099/00221287-137-3-533
[41] Kuenz A, Krull S. Biotechnological production of itaconic acid:things you have to know. Applied Microbiology and Biotechnology, 2018,102(9):3901-3914.
doi: 10.1007/s00253-018-8895-7 pmid: 29536145
[42] Eimhjellen K E, Larsen H. The mechanism of itaconic acid formation by Aspergillus terreus. 2. The effect of substrates and inhibitors. The Biochemical Journal, 1955,60(1):139-147.
doi: 10.1042/bj0600139
[43] Kuenz A, Gallenmüller Y, Willke T, et al. Microbial production of itaconic acid: developing a stable platform for high product concentrations. Applied Microbiology and Biotechnology, 2012,96(5):1209-1216.
doi: 10.1007/s00253-012-4221-y pmid: 22752264
[44] Krull S, Eidt L, Hevekerl A, et al. Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochemistry, 2017,63:169-176.
doi: 10.1016/j.procbio.2017.08.010
[45] Saha B C, Kennedy G J. Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains. Journal of Microbiological Methods, 2018,144:53-59.
doi: 10.1016/j.mimet.2017.11.002
[46] Saha B C, Kennedy G J. Efficient itaconic acid production by Aspergillus terreus: Overcoming the strong inhibitory effect of manganese. Biotechnology Progress, 2020,36(2):e2939. DOI: 10.1002/btpr.2939.
[47] Gnanasekaran R, Dhandapani B, Iyyappan J. Improved itaconic acid production by Aspergillus niveus using blended algal biomass hydrolysate and glycerol as substrates. Bioresource Technology, 2019,283:297-302.
doi: 10.1016/j.biortech.2019.03.107
[48] Nelson G E N, Traufler D H, Kelley S E, et al. Production of itaconic acid by Aspergillus terreus in 20-liter fermentors. Industrial & Engineering Chemistry, 1952,44(5):1166-1168.
doi: 10.1021/ie50509a062
[49] Lockwood L B, Ward G E. Fermentation process for itaconic acid. Industrial & Engineering Chemistry, 1945,37(4):405-406.
doi: 10.1021/ie50424a029
[50] Cunha da Cruz J, Machado de Castro A, Camporese Sérvulo E F. World market and biotechnological production of itaconic acid. 3 Biotech, 2018,8(3):1-15.
doi: 10.1007/s13205-017-1019-8
[51] Maassen N, Panakova M, Wierckx N, et al. Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungusUstilago maydis. Engineering in Life Sciences, 2014,14(2):129-134.
doi: 10.1002/elsc.v14.2
[52] Gao Q, Liu J, Liu L M. Relationship between morphology and itaconic acid production by Aspergillus terreus. Journal of Microbiology and Biotechnology, 2014,24(2):168-176.
doi: 10.4014/jmb.1303.03093
[53] Saha B C, Kennedy G J. Phosphate limitation alleviates the inhibitory effect of manganese on itaconic acid production by Aspergillus terreus. Biocatalysis and Agricultural Biotechnology, 2019,18:101016.
doi: 10.1016/j.bcab.2019.01.054
[54] Bentley R, Thiessen C P. Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. The Journal of Biological Chemistry, 1957,226(2):703-720.
doi: 10.1016/S0021-9258(18)70852-1
[55] Collins C H. Safety in industrial microbiology and biotechnology: UK and European classifications of microorganisms and laboratories. Trends in Biotechnology, 1990,8:345-348.
doi: 10.1016/0167-7799(90)90221-I
[56] Saha B C, Kennedy G J, Bowman M J, et al. Factors affecting production of itaconic acid from mixed sugars by Aspergillus terreus. Applied Biochemistry and Biotechnology, 2019,187(2):449-460.
doi: 10.1007/s12010-018-2831-2
[57] Gyamerah M H. Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Applied Microbiology and Biotechnology, 1995,44(1-2):20-26.
doi: 10.1007/BF00164475
[58] Larsen H, Eimhjellen K E. The mechanism of itaconic acid formation by Aspergillus terreus. 1. The effect of acidity. The Biochemical Journal, 1955,60(1):135-139.
[59] Boruta T, Bizukojc M. Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective. World Journal of Microbiology and Biotechnology, 2017,33(2):1-12.
doi: 10.1007/s11274-016-2144-y
[60] Mattey M. The production of organic acids. Critical Reviews in Biotechnology, 1992,12(1-2):87-132.
doi: 10.3109/07388559209069189
[61] Riscaldati E, Moresi M, Petruccioli M, et al. Effect of pH and stirring rate on itaconate production by Aspergillus terreus. Journal of Biotechnology, 2000,83(3):219-230.
doi: 10.1016/S0168-1656(00)00322-9
[62] Bafana R, Sivanesan S, Pandey R A. Optimization and scale up of itaconic acid production from potato starch waste in stirred tank bioreactor. Biotechnology Progress, 2019,35(3):e2774.
doi: 10.1002/btpr.2774
[63] Dwiarti L, Otsuka M, Miura S, et al. Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresource Technology, 2007,98(17):3329-3337.
doi: 10.1016/j.biortech.2006.03.016
[64] Bafana R, Sivanesan S, Pandey R A. Itaconic acid production by filamentous fungi in starch-rich industrial residues. Indian Journal of Microbiology, 2017,57(3):322-328.
doi: 10.1007/s12088-017-0661-5
[65] Reddy C S K, Singh R P. Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresource Technology, 2002,85(1):69-71.
doi: 10.1016/S0960-8524(02)00075-5
[66] Klement T, Büchs J. Itaconic acid - A biotechnological process in change. Bioresource Technology, 2013,135:422-431.
doi: 10.1016/j.biortech.2012.11.141 pmid: 23298766
[67] Steen E J, Kang Y S, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010,463(7280):559-562.
doi: 10.1038/nature08721 pmid: 20111002
[68] Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 2000,74(1):25-33.
doi: 10.1016/S0960-8524(99)00161-3
[69] León Peláez A M, Serna Cataño C A, Quintero Yepes E A, et al. Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control, 2012,24(1-2):177-183.
doi: 10.1016/j.foodcont.2011.09.024
[70] Liu Y L, Liu G, Zhang J, et al. Itaconic acid fermentation using activated charcoal-treated corn stover hydrolysate and process evaluation based on Aspen plus model. Biomass Conversion and Biorefinery, 2020,10(2):463-470.
doi: 10.1007/s13399-019-00423-3
[71] Modig T, Lidén G, Taherzadeh M J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochemical Journal, 2002,363(3):769-776.
doi: 10.1042/bj3630769
[72] Magalhães A I Jr, de Carvalho J C Jr, Thoms J F Jr, et al. Second-generation itaconic acid: an alternative product for biorefineries? Bioresource Technology, 2020,308:123319.
doi: S0960-8524(20)30591-5 pmid: 32278999
[73] Tippkötter N, Duwe A M, Wiesen S, et al. Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids. Bioresource Technology, 2014,167:447-455.
doi: 10.1016/j.biortech.2014.06.052 pmid: 25006020
[74] Li X, Zheng K, Lai C H, et al. Improved itaconic acid production from undetoxified enzymatic hydrolysate of steam-exploded corn stover using an Aspergillus terreus mutant generated by atmospheric and room temperature plasma. BioResources, 2016,11(4):9047-9058. DOI: 10.15376/biores.11.4.9047-9058.
[75] Jiménez-Quero A, Pollet E, Zhao M J, et al. Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains. Journal of Microbiology and Biotechnology, 2016,26(9):1557-1565.
doi: 10.4014/jmb.1603.03073 pmid: 27291673
[76] Jonsson L J, Alriksson B, Nilvebrant N O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 2013,6(1):16.
doi: 10.1186/1754-6834-6-16
[77] Wu X F, Liu Q, Deng Y D, et al. Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. Bioresource Technology, 2017,241:25-34.
doi: 10.1016/j.biortech.2017.05.080
[78] Pedroso G B, Montipó S, Mario D A N, et al. Building block itaconic acid from left-over biomass. Biomass Conversion and Biorefinery, 2017,7(1):23-35.
doi: 10.1007/s13399-016-0210-1
[79] Yang J, Xu H, Jiang J C, et al. Itaconic acid production from undetoxified enzymatic hydrolysate of bamboo residues using Aspergillus terreus. Bioresource Technology, 2020,307:123208.
doi: 10.1016/j.biortech.2020.123208
[80] Jiménez-Quero A, Pollet E, Avérous L, et al. Optimized bioproduction of itaconic and fumaric acids based on solid-state fermentation of lignocellulosic biomass. Molecules, 2020,25(5):1070.
doi: 10.3390/molecules25051070
[1] 张野,王吉平,苏天明,何铁光,王瑾,曾向阳. 筛选微生物降解木质纤维素的研究进展[J]. 中国生物工程杂志, 2020, 40(6): 100-105.
[2] 秦梦彤,胡婧,李冠华. 生物质生物预处理研究进展与展望[J]. 中国生物工程杂志, 2018, 38(5): 85-91.
[3] 马泽林, 刘家亨, 黄序, 财音青格乐, 朱宏吉. 微生物利用木质纤维素的研究进展[J]. 中国生物工程杂志, 2017, 37(6): 124-133.
[4] 曹长海, 张全, 关浩, 王领民, 乔凯, 佟明友. 提高木质纤维素酶解糖化效率的研究进展[J]. 中国生物工程杂志, 2015, 35(8): 126-136.
[5] 熊圆圆, 卢传东, 陶冶, 赵锦芳. 重组大肠杆菌利用废纸水解液发酵产L-乳酸[J]. 中国生物工程杂志, 2015, 35(5): 49-54.
[6] 张东旭. 生物法脱除木质纤维素水解液中抑制因子的最新研究进展[J]. 中国生物工程杂志, 2013, 33(5): 120-124.
[7] 叶菁, 许敬亮, 肖波, 袁振宏, 徐惠娟, 杨柳, 李谢昆. 谷氨酸棒杆菌戊糖代谢利用研究进展[J]. 中国生物工程杂志, 2012, 32(11): 132-136.
[8] 叶菁, 许敬亮, 肖波, 袁振宏, 徐惠娟, 杨柳, 李谢昆. 谷氨酸棒杆菌戊糖代谢利用研究进展[J]. 中国生物工程杂志, 2012, 32(11): 132-136.
[9] 徐勇, 王荥, 朱均均, 勇强, 余世袁. 木糖高效生物转化的新出路[J]. 中国生物工程杂志, 2012, 32(05): 113-119.
[10] 万楚筠, 刘睿, 黄凤洪, 黄茜. 油菜秸秆混合发酵降解菌的筛选[J]. 中国生物工程杂志, 2011, 31(06): 70-74.
[11] 田康明, 周丽, 陈献忠, 左志锐, 石贵阳, 王正祥. L-乳酸的发酵生产和聚L-乳酸的化学加工[J]. 中国生物工程杂志, 2011, 31(02): 102-115.
[12] 杨登峰 潘丽霞 关妮 米慧芝 左文朴 黄日波.
利用木糖-葡萄糖为原料产乙醇酵母的筛选、鉴定及发酵试验
[J]. 中国生物工程杂志, 2009, 29(10): 69-73.
[13] 徐晴 马晓琛 付永前 李霜 黄和. 根霉菌利用木质纤维素发酵生产有机酸的研究进展[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[14] 张裕卿,付二红,梁江华. 超声波对木质纤维素糖化过程影响的研究[J]. 中国生物工程杂志, 2007, 27(9): 81-84.
[15] 罗明典. 发展生物聚合物工程的趋势[J]. 中国生物工程杂志, 1993, 13(4): 11-14.