Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (8): 118-126    
综述     
自组装多肽在新型药物制剂研发领域中的应用
邵明香1,2, 龚珉1, 汤立达1,2
1. 天津药物研究院 释药技术与药代动力学国家重点实验室 天津市新药设计与发现重点实验室 天津 300193;
2. 天津医科大学 天津 300080
Utility of the Self-assembling Peptides as Novel Drug Formulations
SHAO Ming-xiang1,2, GONG Min1, TANG Li-da1,2
1. State Key Laboratory of Drug Delivery Technology and Pharmaceutics, Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China;
2. Pharmacology, Tianjin Medical University, Tianjin 300080, China
 全文: PDF(303 KB)   HTML
摘要: 自组装多肽是一类具有特殊结构和功能的多肽分子,可以通过自组装的方式形成带有空腔的聚合物。利用这种特性,自组装多肽可以作为释药载体来改善药物的药学性质,例如提高药物的生物利用度,降低药物的毒性,增加药物的靶向性以及透膜性等,使药物更加适合临床需求。自组装多肽主要有两种,一种是基于多肽的空间结构进行自组装,另外一种是基于多肽的两亲性。主要就两亲性多肽自组装的特点及其在药物制剂研发领域中的应用进行阐述,并展望其在本领域的发展前景。
关键词: 自组装多肽释药载体靶向    
Abstract: Self-assembled peptides possess distinct structural characterizations, inducing the formation of a stable supermolecule with a cavity. This central cavity was employed as drug carrier in last decade. The wide range utilities of self-assembled peptides covered the improved bioavailability, drug targeting release, cytotoxic alleviation, cell penetration activity and so on. There are two kinds of self-assembled peptide generally. One is based on the spatial structure of the peptide, and the other one is based on peptide amphiphile. Amphiphilic peptide has four rationally designed chemical entities. By reasonable controlling the chemical structure, amphiphilic peptides can self-assemble into a variety of nanostructures, such as nanofiber, nanotube, nanoparticles and hydrogel. It is highlighted a kind of peptide that is cellular penetration peptide(CPP). The mechanism of supermolecule formation and drug loading procedures was summarized. The remarkable functions of self-assembled peptides spread a prosperous scene in drug controlled release and drug sustained release.
Key words: Self-assembled peptide    Drug carrier    Targeting
收稿日期: 2013-05-06 出版日期: 2013-08-25
ZTFLH:  Q819  
基金资助: 国家自然科学基金(2009ZX09301-008-P-05);国家重大新药创制"十一五"科技重大专项(2011ZX09041-009)资助项目
通讯作者: 汤立达tangld@tjipr.com     E-mail: tangld@tjipr.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邵明香
龚珉
汤立达

引用本文:

邵明香, 龚珉, 汤立达. 自组装多肽在新型药物制剂研发领域中的应用[J]. 中国生物工程杂志, 2013, 33(8): 118-126.

SHAO Ming-xiang, GONG Min, TANG Li-da. Utility of the Self-assembling Peptides as Novel Drug Formulations. China Biotechnology, 2013, 33(8): 118-126.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I8/118

[1] Lipinski C A. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods, 2000,44:235-249.
[2] Stella V J,Nti-Addae K W. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev, 2007,59:677-694.
[3] Allen T M,Cullis P R. Drug delivery systems: entering the mainstream. Science, 2004,303:1818-1822.
[4] Tang Y,Heaysman C L,Willis S,et al. Physical hydrogels with self-assembled nanostructures as drug delivery systems. Expert Opin Drug Deliv, 2011,8:1141-1159.
[5] Reches M,Gazit E. Molecular self-assembly of peptide nanostructures: mechanism of association and potential uses. Current Nanoscience, 2006,2:105-111.
[6] Gummel J,Sztucki M,Narayanan T,et al. Concentration dependent pathways in spontaneous self-assembly of unilamellar vesicles. Soft Matter, 2011,7:5731-5738.
[7] Fu I W,Markegard C B,Chu B K,et al. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations. Adv Healthc Mater, 2013,doi: 10.1002/adhm.201200400.
[8] Tang J,Yao J,Shi J,et al. Synthesis, characterization, drug-loading capacity and safety of novel pH-independent amphiphilic amino acid copolymer micelles. Pharmazie, 2012,67:756-764.
[9] 许小丁,陈昌盛,陈荆晓,等. 多肽分子自组装. 中国科学, 2011,41(2):221-238. Xu X D, Cheng C S, Chen J X, et al. Molecular self-assembly of peptide. Scientia Sinica Chimica, 2011,41(2):221-238.
[10] Cui H,Webber M J,Stupp S I. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers, 2010,94:1-18.
[11] Hartgerink J D,Beniash E,Stupp S I. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A, 2002,99:5133-5138.
[12] Velichko Y S,Stupp S I, Cruz M O. Molecular simulation study of peptide amphiphile self-assembly. J Phys Chem B, 2008,112:2326-2334.
[13] Cui H,Muraoka T,Cheetham A G,et al. Self-assembly of giant peptide nanobelts. Nano Lett, 2009,9:945-951.
[14] Webber M J,Kessler J A,Stupp S I. Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med, 2010,267:71-88.
[15] Sasso L,Vedarethinam I,Emneus J,et al. Self-assembled diphenylalanine nanowires for cellular studies and sensor applications. J Nanosci Nanotechnol, 2012,12:3077-3083.
[16] Jaime C L,Bake S W. Self-assembled peptide nanostructures for biomedical applications: advantages and challenges. Biomaterials Science and Engineering, 2011,25:115-138.
[17] Tarek M,Maigret B,Chipot C. Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers. Biophys J, 2003,85:2287-2298.
[18] Yu T,Lee O S,Schatz G C. Steered molecular dynamics studies of the potential of mean force for peptide amphiphile self-assembly into cylindrical nanofibers. J Phys Chem A, 2013,DOI: 10.1021/jp401508w.
[19] Jana N R. Shape effect in nanoparticle self-assembly. Angew Chem Int Ed Engl, 2004,43:1536-1540.
[20] Kurzawa L,Pellerano M,Morris M C. PEP and CADY-mediated delivery of fluorescent peptides and proteins into living cells. Biochim Biophys Acta, 2010,1798:2274-2285.
[21] Eum W S,Kim D W,Hwang I K,et al. In vivo protein transduction: biologically active intact pep-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic Biol Med, 2004,37:1656-1669.
[22] Morris M C,Gros E,Aldrian-Herrada G,et al. A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Res, 2007,35:e49.
[23] Rittner K,Benavente A,Bompard-Sorlet A,et al. New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol Ther, 2002,5:104-114.
[24] Zhang X X,Eden H S,Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release, 2012,159:2-13.
[25] Konate K,Crombez L,Deshayes S,et al. Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery. Biochemistry, 2010,49:3393-3402.
[26] Crombez L,Divita G. A non-covalent peptide-based strategy for siRNA delivery. Methods Mol Biol, 2011,683:349-360.
[27] Deshayes S,Konate K,Rydstrom A,et al. Self-assembling peptide-based nanoparticles for siRNA delivery in primary cell lines. Small, 2012,8:2184-2188.
[28] Rydstrom A,Deshayes S,Konate K,et al. Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles. PLoS One, 2011,6:e25924.
[29] Deshayes S,Konate K,Aldrian G,et al. Structural polymorphism of non-covalent peptide-based delivery systems: highway to cellular uptake. Biochim Biophys Acta, 2010,1798:2304-2314.
[30] Crowet J M,Lins L,Deshayes S,et al. Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo. Biochim Biophys Acta, 2013,1828:499-509.
[31] Cihlar T,Ray A S. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res, 2010,85:39-58.
[32] Agopian A,Gros E,Aldrian-Herrada G,et al. A new generation of peptide-based inhibitors targeting HIV-1 reverse transcriptase conformational flexibility. J Biol Chem, 2009,284:254-264.
[33] Morris M C,Depollier J,Mery J,et al. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol, 2001,19:1173-1176.
[34] Yao H J,Ju R J,Wang X X,et al. The antitumor efficacy of functional paclitaxel nanomicelles in treating resistant breast cancers by oral delivery. Biomaterials, 2011,32:3285-3302.
[35] Utreja P,Jain S,Tiwary A K. Evaluation of biosafety and intracellular uptake of Cremophor EL free paclitaxel elastic liposomal formulation. Drug Deliv, 2012,19:11-20.
[36] O'Connor T L,Kossoff E. Delayed seizure associated with paclitaxel-cremophorel in a patient with early-stage breast cancer. Pharmacotherapy, 2009,29:993-996.
[37] Rivkin I,Cohen K,Koffler J,et al. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials, 2010,31:7106-7114.
[38] Li S,Byrne B,Welsh J,et al. Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol Prog, 2007,23:278-285.
[39] Van S,Das S K,Wang X,et al. Synthesis, characterization, and biological evaluation of poly(L-gamma-glutamyl-glutamine)-paclitaxel nanoconjugate. Int J Nanomedicine, 2010,5:825-837.
[40] Yokoi H,Kinoshita T,Zhang S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A, 2005,102:8414-8419.
[41] Liu J,Zhang L,Yang Z,et al. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomedicine, 2011,6:2143-2153.
[42] Li Y,Xu W,Tang L,et al. A novel GLP-1 analog exhibits potent utility in the treatment of type 2 diabetes with an extended half-life and efficient glucose clearance in vivo. Peptides, 2011,32:1408-1414.
[43] Zheng X,Li Y,Li X,et al. Peptide complex containing GLP-1 exhibited long-acting properties in the treatment of type 2 diabetes. Diabetes Res Clin Pract, 2011,93:410-420.
[44] Ruttimann E B,Arnold M,Geary N,et al. GLP-1 antagonism with exendin (9-39) fails to increase spontaneous meal size in rats. Physiol Behav, 2010,100:291-296.
[45] 林娟,周庆翰,赵晓军. 荧光光谱对自组装多肽作为药物载体的初步研究. 光谱学与光谱分析, 2009,29(10):2792-2797. Lin J, Zhou Q H, Zhao X J. Study on the designed self-assembling peptide as potential drug carrier by fluorescence spectra. Spectroscopy and Spectral Analysis, 2009,29(10):2792-2797.
[46] Alexander J,Dainiak N,Berger H J,et al. Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med, 1979,300:278-283.
[47] Von Hoff D D,Layard M W,Basa P,et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med, 1979,91:710-717.
[48] Li Y,Zheng X,Cao Z,et al. Self-assembled peptide (CADY-1) improved the clinical application of doxorubicin. Int J Pharm, 2012,434:209-214.
[49] Veronese F M,Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today, 2005,10:1451-1458.
[50] Veronese F M,Schiavon O,Pasut G,et al. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug Chem, 2005,16:775-784.
[51] Chari R V. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res, 2008,41:98-107.
[52] Batrakova E V. Reversal of multidrug resistance by PEG-b-PLA polymeric micelles loaded with paclitaxel. Nanomedicine (Lond), 2011,6:1493-1494.
[53] Batrakova E V. Overcoming multidrug resistance using silica nanoparticles PEG-b-PLA polymeric micelles loaded with doxorubicin. Nanomedicine (Lond), 2011,6:1492-1493.
[54] Gou M,Shi H,Guo G,et al. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles. Nanotechnology, 2011,22:095102.
[55] Gou M,Zheng L,Peng X,et al. Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro. Int J Pharm, 2009,375:170-176.
[56] Gou M,Zheng X,Men K,et al. Poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery. J Phys Chem B, 2009,113:12928-12933.
[57] Qu W,Chen W H,Kuang Y,et al. Avidin-biotin interaction mediated peptide assemblies as efficient gene delivery vectors for cancer therapy. Mol Pharm, 2013,10:261-269.
[1] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[2] 胡胜涛,张二兵,林也,张逢,黄丹,宋厚盼,刘斌,蔡雄. 经皮给药纳米载体及靶向系统治疗类风湿关节炎研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 98-106.
[3] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[4] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[5] 肖雪筠,唐奇,新华·那比. 靶向肿瘤微环境的CAR-T治疗研究*[J]. 中国生物工程杂志, 2020, 40(12): 67-74.
[6] 曹文杰,熊向源,龚妍春,李资玲,李玉萍. 高分子囊泡在药物释放体系的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 62-72.
[7] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[8] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[9] 明金玉, 李化丹, 梁士博, 何莉, 于青含, 李集临, 张延明. 植物功能性靶向基因标记的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 83-91.
[10] 周忠厅, 张权, 王胜涛, 蔡颖, 中西秀树, 尹健. 共价连接BODIPY光敏剂的聚合物纳米胶束及其靶向光动力疗效的研究[J]. 中国生物工程杂志, 2017, 37(10): 33-41.
[11] 秦海霞, 崔红凯, 潘莹, 户瑞丽, 朱利红, 王世进. miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1对卵巢癌细胞增殖的影响[J]. 中国生物工程杂志, 2016, 36(6): 24-31.
[12] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[13] 何敏瑜, 冉海涛. 核酸适配体结合纳米材料用于肿瘤靶向治疗[J]. 中国生物工程杂志, 2015, 35(4): 86-91.
[14] 唐德平, 毛爱红, 王芳, 张虹, 王黎, 廖世奇. 适配体介导脂质体靶向递送siRNA的研究[J]. 中国生物工程杂志, 2015, 35(1): 54-60.
[15] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.