Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (8): 111-117    
综述     
外泌体(Exosome)及其在肿瘤调控中的作用
元小宁1, 朱运峰1,2
1. 北京交通大学生命科学与生物工程研究院 北京 100044;
2. 解放军总医院肿瘤中心实验室 北京 100853
Exosome and Its Roles in Regulation of Tumor Cell
YUAN Xiao-ning1, ZHU Yun-feng1,2
1. The Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing 100044, China;
2. The Key Laboratory in Tumor Center of PLA General Hospital, Beijing 100853, China
 全文: PDF(510 KB)   HTML
摘要: 外泌体是多种活细胞分泌的直径约为40~100nm的小囊泡体,分布于外周血、尿液、唾液、腹水、羊水等体液中。外泌体的来源多样,可以来自各种类型细胞,其内容物含蛋白、脂质和核酸等,特别是在其中发现的Long non-coding RNA使其更具有意义,其内容物种类和数量与低氧和酸碱微环境相关。外泌体在免疫监视、炎症反应及癌症发生发展等许多生理和病理过程中有重要的功能,尤其在细胞间交流、对靶细胞中的基因重编码以及肿瘤的发生发展和侵袭转移中具有重要作用。从外泌体的起源、种类及其在肿瘤发生发展和转移相关的研究方面进行综述,对其深入研究可为治疗肿瘤提供新的思路。
关键词: 外泌体肿瘤细胞迁移血管生成    
Abstract: Exosome is a kind of small membranous vesicles secreted by numerous of cells including reticulocytes, cytotoxic T lymphocytes, B lymphocytes, dendritic cells, mast cells, platelets, epithelial cells and tumor cells. It can be isolated from the media of cultured cell or bodily fluids such as urine and plasma. Its biogenesis includes the inward budding of endosomes, which form multivesicles bodies(MVB),and releasing of the vesicle into the extracellular environment by fusing with the plasma membrane. As a inter-cell communicator, exosome is considered to participate not only in physiological regulation such as cell-to-cell communication and genetic reprogramming of their target cells, but also in pathological regulation such as metastasis of cancer. Notably, among the contents in exosome, some long non-coding RNAs (LncRNAs) were identified, which gives a clue that LncRNAs protected by exosome from degradation may conduct some important functions for cell regulation.
Key words: Exosome    Tumor cell    Metastasis    Angiogenesis
收稿日期: 2013-05-12 出版日期: 2013-08-25
ZTFLH:  Q249  
基金资助: 国家"863"计划资助项目(2011AA02A110)
通讯作者: 朱运峰,E-mail:zhuyf2004@163.com     E-mail: zhuyf 2004@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
元小宁
朱运峰

引用本文:

元小宁, 朱运峰. 外泌体(Exosome)及其在肿瘤调控中的作用[J]. 中国生物工程杂志, 2013, 33(8): 111-117.

YUAN Xiao-ning, ZHU Yun-feng. Exosome and Its Roles in Regulation of Tumor Cell. China Biotechnology, 2013, 33(8): 111-117.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I8/111

[1] Stoorvogel W, Kleijmeer M J, Geuze H J, et al. The biogenesis and functions of exosomes. Traffic, 2002,3(5): 321-330.
[2] Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 2009,21(4): 575-581
[3] Mathivanan S, Simpson R J. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics, 2009,9(21): 4997-5000.
[4] Zech D, Rana S, Büchler M W,et al. Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Communication and Signaling, 2012,10(1): 1-17.
[5] Carroll-Portillo A, Surviladze Z, Cambi A, et al. Mast cell synapses and exosomes: membrane contacts for information exchange. Frontiers in Immunology, 2012,3:46.
[6] Lai R C, Arslan F, Lee M M, et al.Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 2010,4(3): 214-222.
[7] Mallegol J, Van Niel G, Lebreton C, et al. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology, 2007,132(5): 1866-1876.
[8] Lai R C, Yeo R W Y, Tan K H, et al. Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regenerative Medicine, 2013,8(2): 197-209.
[9] Taverna S, Flugy A, Saieva L, et al. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. International Journal of Cancer, 2012,130(9): 2033-2043.
[10] Dear J W, Street J M, Bailey M A. Urinary exosomes: A reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics, 2013,13(10-11):1572-1580.
[11] Gallo A, Tandon M, Alevizos I, et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PloS one, 2012,7(3): e30679.
[12] Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nature Reviews Immunology, 2009,9(8): 581-593.
[13] Aliotta J M. Tumor exosomes: a novel biomarker? Journal of Gastrointestinal Oncology, 2011,2(4): 203.
[14] Petersen S H, Odintsova E, Haigh T A, et al. The role of tetraspanin CD63 in antigen presentation via MHC class II. European Journal of Immunology, 2011,41(9): 2556-2561.
[15] Taylor D D, Doellgast G J. Quantitation of peroxidase-antibody binding to membrane fragments using column chromatography. Analytical Biochemistry, 1979,98(1): 53-59.
[16] Raposo G, Nijman H W, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine, 1996,183(3): 1161-1172.
[17] Muralidharan-Chari V, Clancy J W, Sedgwick A, et al. Microvesicles: mediators of extracellular communication during cancer progression. Journal of Cell Science, 2010,123(10): 1603-1611.
[18] Hendrix A, Hume A N. Exosome signaling in mammary gland development and cancer. Int J Dev Biol, 2011,55: 879-887.
[19] Abi-Rizk G, Besson F. Interactions of Triton X-100 with sphingomyelin and phosphatidylcholine monolayers: influence of the cholesterol content. Colloids and Surfaces B: Biointerfaces, 2008,66(2): 163-167.
[20] Kooijmans S A, Vader P, van Dommelen S M, et al. Exosome mimetics: a novel class of drug delivery systems. International Journal of Nanomedicine, 2012,7: 1525.
[21] Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. Journal of Biological Chemistry, 2009,284(49): 34211-34222.
[22] Schutters K, Reutelingsperger C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis, 2010,15(9): 1072-1082.
[23] Simpson R J, Lim J W, Moritz R L, et al. Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics, 2009,6(3): 267-283.
[24] Parthasarathy V, Martin F, Higginbottom A, et al. Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology, 2009,127(2): 237-248.
[25] Jones E, Demaria M, Wright M. Tetraspanins in cellular immunity. Biochemical Society Transactions, 2011,39(2): 506.
[26] Nazarenko I, Rana S, Baumann A, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Research, 2010,70(4): 1668-1678.
[27] Finn S. B-Raf (V600E) and thrombospondin-1 promote thyroid cancer progression. 2010,107(23):10649-10654.
[28] Valadi H, Ekstrm K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007,9(6): 654-659.
[29] Eldh M, Ekstrm K, Valadi H, et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PloS one, 2010,5(12): e15353.
[30] Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications, 2011,2: 282.
[31] Wahlgren J, Karlson T D L, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Research, 2012,40(17): e130.
[32] Batagov A O, Kuznetsov V A, Kurochkin I V. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics, 2011,12(Suppl 3): S18.
[33] Kloecker G,Taylor C,Vinayek N, et al. Exosome long non-coding RNA(LncRNA) in lung cancer. In:Vermorken J B,Edegem Belginu.Annals of Oncology,ESMO Congress,Vienna Austria,2012. Oxford, UA: Oxford University Press,2012,77.
[34] Segura E, Guérin C, Hogg N, et al. CD8 dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. The Journal of Immunology, 2007,179(3): 1489-1496.
[35] Corrado C, Raimondo S, Chiesi A, et al. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. International Journal of Molecular Sciences, 2013,14(3): 5338-5366.
[36] Calzolari A, Raggi C, Deaglio S, et al. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. Science Signaling, 2006,119(21): 4486.
[37] Clayton A, Mitchell J P, Linnane S, et al. Human tumor-derived exosomes down-modulate NKG2D expression. The Journal of Immunology, 2008,180(11): 7249-7258.
[38] Clayton A, Turkes A, Dewitt S, et al. Adhesion and signaling by B cell-derived exosomes: the role of integrins. The FASEB Journal, 2004,18(9): 977-979.
[39] Feng D, Zhao W L, Ye Y Y, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic, 2010,11(5): 675-687.
[40] King H, Michael M, Gleadle J. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 2012,12(1): 421.
[41] Park J E, Tan H S, Datta A, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & Cellular Proteomics, 2010,9(6): 1085-1099.
[42] Honegger A, Leitz J, Bulkescher J, et al. Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and amounts of extracellular microvesicles released from HPV-positive cancer cells. International Journal of Cancer, 2013,133(7):1631-1642.
[43] Huber V, Fais S, Iero M, et al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology, 2005,128(7): 1796-1804.
[44] Whiteside T L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochemical Society Transactions, 2013,41(1): 245-251.
[45] Yang C, Kim S-H, Bianco N R, et al. Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model. PloS One, 2011,6(8): e22517.
[46] Bullerdiek J, Flor I. Exosome-delivered microRNAs of "chromosome 19 microRNA cluster"as immunomodulators in pregnancy and tumorigenesis. Molecular Cytogenetics, 2012,5(1): 1-4.
[47] Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Letters, 2012,315(1): 28-37.
[48] Corrado C, Flugy A M, Taverna S, et al. Carboxyamidotriazole-orotate inhibits the growth of imatinib-resistant chronic myeloid leukaemia cells and modulates exosomes-stimulated angiogenesis. PloS One, 2012,7(8): e42310.
[49] Mineo M, Garfield S H, Taverna S, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a src-dependent fashion. Angiogenesis, 2012,15(1): 33-45.
[50] Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences, 2012,109(31): e2110-e2116.
[51] Beckler M D, Higginbotham J N, Franklin J L, et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Molecular & Cellular Proteomics, 2013,12(2): 343-355.
[52] Qu J L, Qu X J, Zhao M F, et al. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Digestive and Liver Disease, 2009,41(12): 875-880.
[53] Bobrie A, Théry C. Unraveling the physiological functions of exosome secretion by tumors. Oncoimmunology. 2013,2: e22565.
[54] Webber J, Steadman R, Mason M D, et al. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Research, 2010,70(23): 9621-9630.
[55] McCready J, Sims J D, Chan D, et al. Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer, 2010,10(1): 294.
[56] Higginbotham J N, Demory Beckler M, Gephart J D, et al. Amphiregulin exosomes increase cancer cell invasion. Current Biology, 2011,21(9): 779-786.
[57] Peinado H, Aleckovic M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 2012,18(6): 883-891.
[58] Marton A, Vizler C, Kusz E, et al. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro. Immunology Letters, 2012,148(1):34-38.
[59] Liang B, Peng P, Chen S, et al. Characterization and proteomic analysis of ovarian cancer-derived exosomes. Journal of Proteomics, 2013,80: 171-182.
[60] Tanaka Y, Kamohara H, Kinoshita K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer, 2013,119(6):1159-1167.
[61] Suetsugu A, Honma K, Saji S, et al.Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude mouse models. Advanced Drug Delivery Reviews, 2013,65(3):383-390.
[62] Luga V, Zhang L, Viloria-Petit A M, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 2012,151(7): 1542-1556.
[63] Beloribi S, Ristorcelli E, Breuzard G, et al. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells. PloS One, 2012,7(10): e47480.
[64] Dayan D, Salo T, Salo S, et al. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer. Cancer Medicine. 2012,1(2): 128-140.
[65] Gu J, Qian H, Shen L, et al. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PloS One, 2012,7(12): e52465.
[1] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[2] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[3] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[4] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[5] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[6] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[7] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[8] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[9] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[10] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[11] 吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.
[12] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[13] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.
[14] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[15] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.