Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (10): 33-41    DOI: 10.13523/j.cb.20171005
研究报告     
共价连接BODIPY光敏剂的聚合物纳米胶束及其靶向光动力疗效的研究
周忠厅1, 张权1,2, 王胜涛1, 蔡颖1, 中西秀树1,2, 尹健1,2
1. 糖化学与生物技术教育部重点实验室 无锡 214122;
2. 江南大学生物工程学院 无锡 214122
Polymeric Nanomicelles Conjugated with BODIPY-based Photosensitizers for Targeted Photodynamic Therapy
ZHOU Zhong-ting1, ZHANG Quan1,2, WANG Sheng-tao1, CAI Yin1, NAKANISHI Hideki1,2, YIN Jian1,2
1. Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China;
2. School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(1710 KB)   HTML
摘要: 目的:利用聚合物纳米胶束靶向输送光敏剂分子已经成为光动力治疗癌症的研究热点。方法:采用原子转移自由基聚合反应合成嵌段聚合物聚丙烯酸叔丁酯-聚甲基丙烯酸缩水甘油酯(PtBA-b-PGMA),共聚物的一端脱除叔丁基,通过缩合反应共价键连接甘露糖分子,另一端环氧基开环引入叠氮基,并通过"click"反应共价连接氟硼二吡咯光敏剂分子,最后制备得到表面甘露糖修饰的负载光敏剂聚合物胶束。利用核磁共振氢谱仪和傅立叶变换红外光谱仪进行结构确认;通过透射电镜和动态光散射等考察其理化性质;经激光共聚焦显微镜和MTT细胞毒性实验对其甘露糖受体靶向性及光动力疗效进行考察和评价。结果:聚合物PtBA-b-PGMA的相对分子量为16 924,其分散系数为1.36。聚合物中环氧基开环引入叠氮后在2 106 cm-1处出现叠氮基特征峰。经过"click"反应引入氟硼二吡咯光敏剂分子后,叠氮基特征峰消失,在1 637 cm-1处出现三氮唑特征峰。聚合物胶束粒径分布均一,稳定性良好。胶束平均流体力学直径为178 nm,在水溶液中粒度分布较窄(PDI=0.298)。聚合物胶束对人乳腺癌MDA-MB-231细胞和HEK293正常细胞均无暗毒性,在535 nm LED光照下对乳腺癌MDA-MB-231细胞具有较好的光动力治疗效果。结论:聚合物胶束能被MDA-MB-231癌细胞表面高表达的甘露糖受体特异性识别,并被内吞进入癌细胞内,具有较好的光动力杀伤作用。
关键词: 聚合物纳米胶束细胞内吞光毒性光动力治疗靶向输送    
Abstract: Objectives:Polymeric nanomicelles have attracted more attention since it could become a targeted delivery system of photosensitizers for cancer photodynamic therapy (PDT). Methods:The poly(butyl acrylate)-block-poly(glycidyl methacrylate) (PtBA-b-PGMA) copolymer was first synthesized by atom transfer radical polymerization. After the tert-butyl group was removed from PtBA-b-PGMA, mannose was covalently linked via amide reaction. Finally, BODIPY-based photosensitizers were introduced by the "click" reaction to obtain polymeric nanomicelles (Man-PAA-b-PGMA-BPDIPY). Structure of Man-PAA-b-PGMA-BPDIPY was confirmed by 1H NMR and FT-IR. The size and morphology of Man-PAA-b-PGMA-BODIPY was characterized by transmission electron microscopy and dynamic light scattering. The cytotoxicity, cellular uptake and PDT effects of Man-PAA-b-PGMA-BODIPY were investigated by MTT assay and confocal laster scanning microscope. Results:The relative molecular weight of PtBA-b-PGMA is 16 924, and the dispersion coefficient is 1.36. The appearance of a peak at 2 106 cm-1 in the FTIR spectrum of Man-PAA-b-PGMA-N3 indicates successful grafting of azide groups onto the polymer. This peak disappeared and a new peak at 1 637 cm-1 was observed after azide-alkyne cycloaddition "click" chemistry, indicating the formation of triazole bonds in Man-PAA-b-PGMA-BODIPY. Polymeric nanomicelles have uniform size distribution and excellent stability in aqueous solution. The average hydrodynamic diameter of polymeric nanomicelles is 178 nm with a narrow size distribution (PDI=0.298). Man-PAA-b-PGMA-BODIPY did not exhibit toxicity against MDA-MB-231 and HEK293 cells in the dark, while the enhanced phototoxicity was observed on MDA-MB-231 cancer cells under 535 nm LED irradiation. Conclusions:Man-PAA-b-PGMA-BODIPY was efficiently internalized by MDA-MB-231 cancer cells through receptor-mediated endocytosis, while HEK293 normal cells showed much lower endocytosis towards micelles under the same conditions. Thus, Man-PAA-b-PGMA-BODIPY shows its potential for targeted PDT of cancer.
Key words: Polymeric nanomicelles    Targeted delivery    Endocytosis    Phototoxicity    Photodynamic therapy
收稿日期: 2017-04-07 出版日期: 2017-10-25
ZTFLH:  Q819  
基金资助: 国家自然科学基金(51403081)、江苏省自然科学基金(BK20140137)资助项目
通讯作者: 中西秀树,hideki@jiangnan.edu.cn;尹健,jianyin@jiangnan.edu.cn     E-mail: hideki@jiangnan.edu.cn;jianyin@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王胜涛
张权
中西秀树
蔡颖
周忠厅
尹健

引用本文:

周忠厅, 张权, 王胜涛, 蔡颖, 中西秀树, 尹健. 共价连接BODIPY光敏剂的聚合物纳米胶束及其靶向光动力疗效的研究[J]. 中国生物工程杂志, 2017, 37(10): 33-41.

ZHOU Zhong-ting, ZHANG Quan, WANG Sheng-tao, CAI Yin, NAKANISHI Hideki, YIN Jian. Polymeric Nanomicelles Conjugated with BODIPY-based Photosensitizers for Targeted Photodynamic Therapy. China Biotechnology, 2017, 37(10): 33-41.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171005        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I10/33

[1] Tian J, Ding L, Xu H J, et al. Cell-specific and pH-activatablerubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. Journal of the American Chemical Society, 2013, 135(50):18850-18858.
[2] Garland M J, Cassidy C M, Woolfson D, et al. Designing photosensitizers for photodynamic therapy:strategies, challenges and promising developments. Future Med Chem, 2009, 1(4):667-691.
[3] Huang L, Li Z J, Zhao Y, et al. Ultralow-power near infrared lamp light operable targeted organic nanoparticle photodynamic therapy. J Am Chem Soc, 2016, 138(44):14586-14591.
[4] 付怀秀, 于翔, 康宏向,等. Photosan脂质立方液晶纳米光敏剂的制备及光动力杀伤效应研究. 中国生物工程杂志, 2015, 35(3):35-41. Fu H X, Yu X, Kang H X, et al. Preparation of photosensitizer-loaded cubic liquid crystalline and its photodynamic therapy effects. China Biotechnology, 2015, 35(3):35-41.
[5] Tang C Y, Liao Y H, Tan G S, et al. Targeted photosensitizer nanoconjugates based on human serum albumin selectively kill tumor cells upon photo-irradiation. RSC Adv, 2015, 5(62):50572-50579.
[6] Ge Y, Weng X, Tian T, et al. A mitochondria-targeted zinc(Ⅱ) phthalocyanine for photodynamic therapy. Rsc Advances, 2013, 3(31):12839-12846.
[7] Lu Z, Zhang X, Wu Z, et al. BODIPY-based macromolecular photosensitizer with selective recognition and enhanced anticancer efficiency. Rsc Advances, 2014, 4(37):19495-19501.
[8] Liu Z J, Yao P. Versatile injectable supramolecular hydrogels containing drug loaded micelles for delivery of various drugs. Polymer Chemistry, 2014, 5(3):1072-1081.
[9] Meng Q B, Kou Y Y, Ma X, et al. Tunable self-assembled peptide amphiphile nanostructures. Langmuir, 2012, 28(11):5017-5022.
[10] Zhang Y, Wang C, Xu C, et al. Morpholino-decorated long circulating polymeric micelles with the function of surface charge transition triggered by pH changes. Chemical Communications, 2013, 49(66):7286-7288.
[11] Liu T J, Liu S, Sheng S H, et al. EPR effect of amphiphilic copolymer micelles observed by fluorescent imaging. Chem Res Chin Univ, 2011, 27(4):628-634.
[12] Noh T H, Kook Y H, Park C Y, et al. Block copolymer micelles conjugated with anti-EGFR antibody for targeted delivery of anticancer drug. Journal of Polymer Science, Part A:Polymer Chemistry, 2008, 46(22):7321-7331.
[13] Danhier F, LeBreton A, Preat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Molecular Pharmaceutics, 2012, 9(11):2961-2973.
[14] Prabaharan M, Grailer J J, Pila S, et al. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn® H40, poly(l-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials, 2009, 30(16):3009-3019.
[15] 汪舒婷, 张权, 叶舟, 等. D-甘露糖修饰聚合物胶束的制备及其在靶向药物输送中的应用. 生物工程学报, 2016, 32(1):84-94. Wang S T, Zhang Q, Ye Z, et al. D-mannose-conjugated polymeric micelles for targeted drug delivery. Chin J Biotech, 2016, 32(1):84-94.
[16] Wang S T, Zhang Q, Ye Z, et al. Tumour-targeted drug delivery with mannose-functionalized nanoparticles self-Assembled from amphiphilic β-cyclodextrins. Chem Eur J, 2016, 22(43):15216-15221.
[17] Liu L, Fu L, Jing T, et al. pH-triggered polypeptides nanoparticles for efficient BODIPY imaging-guided near infrared photodynamic therapy. Acs Applied Materials & Interfaces, 2016, 8(14):8980-8990.
[18] Kamkaew A, Lim S H, Hong B L, et al. BODIPY dyes in photodynamic therapy. Chem Soc Rev, 2013, 42(1):77-88.
[19] Zhang Q, Cai Y, Wang X J, et al. Targeted photodynamic killing of breast cancer cells employing heptamannosylated β-cyclodextrin-mediated nanoparticle formation of an adamantine-functionalized BODIPY photosensitizer. Acs Applied Materials & Interfaces, 2016, 8(49):33405-33411.
[20] Kaya E, Gutsmiedl K, Vrabel M, et al. Synthesis of threefold glycosylated proteins using click chemistry and genetically encoded unnatural amino acids. Chembio Chem, 2009, 10(18):2858-2861.
[21] Lu G, Lam S, Burgess K. An iterative route to "decorated" ethylene glycol-based linkers. Chemical Communications, 2006, 2006(15):1652-1654.
[22] Ke M R, Yeung S L, Ng D K, et al. Preparation and in vitro photodynamic activities of folate-conjugated distyryl boron dipyrromethene based photosensitizers. Journal of Medicinal Chemistry, 2013, 56(21):8475-8483.
[23] Qin J, Jiang X, Gao L, et al. Functional polymericnanoobjects by cross-linking bulk self-assemblies of poly(tert-butylacrylate)-block-poly(glycidylmethacrylate).Macromolecules, 2010, 43(19):3103-3109.
[24] Frenzel R, Höhne S, Hanzelmann C, et al. Tunable hydrophilic or amphiphilic coatings:A "reactive layer stack" approach. Acs Applied Materials & Interfaces, 2015, 7(23):12355-12366.
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.