Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (5): 106-111    DOI: 10.13523/j.cb.20160515
综述     
癌症基因治疗技术进展与展望
刘怡萱1, 边珍2, 马红梅1
1. 西藏大学理学院 拉萨 850000;
2. 复旦大学生命科学学院 上海 200433
Progress and Prospect of Cancer Gene Therapy
LIU Yi-xuan1, BIAN Zhen2, MA Hong-mei1
1. College of Science, Tibet University, Lhasa 850000, China;
2. School of Life Science, Fudan University, Shanghai 200433, China
 全文: PDF(750 KB)   HTML
摘要:

癌症是严重危害人类健康的重大疾病之一,寻找高效可行的癌症治疗方法一直是医学研究的重要课题。继外科手术、放疗、化疗、免疫治疗之后,随着人们对基因组学的深入了解及分子生物学技术的不断发展,基因治疗作为一种全新的治疗理念已被证明具有显著临床疗效及优势。对癌症基因治疗的原理及几种新技术的应用进行介绍,并对基因治疗未来在临床上的应用加以展望。

关键词: RNA干扰CRISPR/Cas9技术基因治疗靶向基因-病毒治疗微小RNA    
Abstract:

Cancer is becoming one of the major diseases with serious hazards to human health. To find efficient treatment protocols has always been the important subject in cancer studies. While surgical management, radiotherapy, chemotherapy and immunotherapy have achieved certain effects, there are distinct limits in each method. With the development of data mining methods and molecular experimental technologies, more and more cancer related targets and signaling pathways were discovered from human genome. Based on such knowledge, gene therapy has been proved to be with significant efficacy and superiorities in both experimental and clinical trials. The principle of gene therapy and some recent technologies in cancer gene therapy were summarized. Then the prospects of cancer gene therapy in future clinical application were discussed.

Key words: miRNA    Cancer targeting gene-viro-therapy    Gene therapy    RNA interference    CRISPR/Cas9
收稿日期: 2015-12-21 出版日期: 2016-01-26
ZTFLH:  Q789  
基金资助:

西藏自治区高校青年教师创新支持计划(QC2015-25),西藏大学研究生高水平人才培养项目(2015-GSP-001)资助项目

通讯作者: 刘怡萱     E-mail: yixuan.liu@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘怡萱
边珍
马红梅

引用本文:

刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.

LIU Yi-xuan, BIAN Zhen, MA Hong-mei. Progress and Prospect of Cancer Gene Therapy. China Biotechnology, 2016, 36(5): 106-111.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160515        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I5/106

[1] Siegel R L, Miller K D, Jemal A. Cancer statistics 2015. CA Cancer J Clic, 2015, 65(1): 5-29.
[2] Coleman M P. Cancer survival: global surveillance will stimulate health policy and improve equity. Lancet, 2014, 383(9916): 564-573.
[3] Emens L A. Chemoimmunotherapy. Cancer J, 2010, 16(4): 295-303.
[4] Rosenberg S A. The development of new cancer therapies based on the molecular identification of cancer regression antigens. Sci Am, 1995, 1(2): 90-100.
[5] Bishop J M. Molecular themes in oncogenesis. Cell, 1991, 64(2): 235-248.
[6] Sen B, Mahadevan B, DeMarini D M. Transcriptional responses to complex mixtures-A review. Mutat Res-Rev Mutat, 2007, 636(1): 144-177.
[7] O'Connor T P, Crystal R G. Genetic medicines: treatment strategies for hereditary disorders. Nat Rev Genet, 2006, 7(4): 261-276.
[8] Zhang Z L, Zou W G, Luo C X, et al. An aimed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res, 2003, 13(6): 481-489.
[9] Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med, 2013, 19(3): 329-336.
[10] Liu X Y. Cancer targeting gene-viro-therapy: An evolving anti-cancer strategy. Chin J Cnacer Biother, 2015, 22(2): 159-165.
[11] 吴元明,陈苏民. RNA干涉的最新研究进展. 中国生物化学与分子生物学报, 2003, 19(4): 411-417. Wu Y M, Chen S M. Recent advances in RNA interference. Chin J Biochem, 2003, 19(4): 411-417.
[12] Masiero M, Nardo G, Indraccolo S, et al. RNA interference: Implications for cancer treatment. Mol Aspects Med, 2007, 28(1): 143-166.
[13] Kong R, Sun B, Wang S J, et al. An experiment 1 study of gemcitabine inducing pancreatic cancer cell apoptosis potentiated by nuclear factor-kappa B P65 siRNA. Chin J Surg, 2010, 48(2): 128-133.
[14] Tang X, Zhang Q, Nishitani J, et al. Overexpression of human papilloma virus type 16 on coproteins enhance shypwda-inducible factor 1 alpha protein accumulation and vascular ren dothelial growth factor expression in human cervical. Clin Cancer Res, 2007, 13(9): 2568-2576.
[15] Zhang G X, Hou X L, Li B L, et al. Vascular endothelial growth factor receptor targeted RNA interference inhibits growth of human lung adenocarcinoma cells. Acad J Sec Mil Med Univ, 2008, 29(10): 1153-1156.
[16] Castanotto D, Rossi J J. The promises and pitfalls of RNA interference-based therapeutics. Nature, 2009, 457(7228): 426-433.
[17] Zhang L, Huang J, Yang N, et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA, 2006, 103(24): 9136-9141.
[18] Chan S P, Slack F J. MicroRNA-mediated silencing inside P-bodies. RNA Biol, 2006, 3(3): 97-100.
[19] 王椋, 赵春华. miRNA与癌症发生. 癌症进展, 2011, 9(2): 124-127. Wang L, Zhao C H. miRNA and carcinogenesis. Oncol Prog, 2011, 9(2): 124-127.
[20] Cimmino A, Calin G A, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting bcl-2. Proc Natl Acad Sci USA, 2005, 102(39): 13944-13949.
[21] Zhang Y, Wang Z, Chen M, et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer, 2012, 11(1): 23-32.
[22] Tang F, Zhang R, He Y, et al. MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells. PLoS One, 2012, 7(5): e35435.
[23] Calin G A, Sevignani C, Dumitru C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA, 2004, 101(29): 2999-3004.
[24] Volinia S, Calin G A, Liu C G, et al. A microRNA expression signature of human solid tumors de fines cancer gene targets. Proc Natl Acad Sci USA, 2006, 103(7): 2257-2261.
[25] Kao S C, Fulham M, Wong K, et al. A significant metabolic and radiological response after a novel targeted microRNA-based treatment approach in malignant pleural mesothelioma. Am J Respir Crit Care Med, 2015, 191(12): 1467-1469.
[26] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
[27] Markarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011, 9(6): 467-477.
[28] Barrangou R. RNA-mediated programmable DNA cleavage. Nature Biotechnology, 2012, 30(9): 836-838.
[29] Aubrey B J, Kelly G L, Kueh A J, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep, 2015, 10(8): 1422-1432.
[30] Zetsche B, Gootenberg J S, Abudayyeh O O, et al. Cpf1 is a single RNA-guided endonuclease of class 2 CRISPR-Cas system. Cell, 2015, 163(3): 759-771.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[3] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[4] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[5] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[6] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.
[7] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[8] 冯昭,丑敏霞. Rpfan37在刺槐共生结瘤过程中的功能探究 *[J]. 中国生物工程杂志, 2018, 38(5): 47-55.
[9] 董维鹏,张少华,许祥,燕炯. 下调Fsp27基因表达联合杨梅素干预对3T3-L1细胞脂解的影响[J]. 中国生物工程杂志, 2018, 38(12): 7-13.
[10] 胡娜, 刘清, 唐照勇, 汤禾静, 敖澜, 赵紫豪, 方廖琼. siRNA干扰MMP-9FAK双基因抑制小鼠黑色素瘤生长和在体迁移[J]. 中国生物工程杂志, 2016, 36(5): 34-39.
[11] 刘丽, 杨晓慧, 王瑞明. RNA干扰沉默KAT基因对蜜蜂合成10-HDA的影响[J]. 中国生物工程杂志, 2016, 36(4): 63-68.
[12] 赵志武, 王君实, 马敏, 张少华, 燕炯. 下调Perilipin 1基因表达对3T3-L1细胞脂解的影响[J]. 中国生物工程杂志, 2016, 36(3): 17-22.
[13] 陶嫦立, 黄树林. TCR基因免疫治疗中优化转TCR基因配对的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 87-92.
[14] 刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠. CRISPR-Cas9研究进展及在基因治疗上的应用[J]. 中国生物工程杂志, 2016, 36(10): 72-78.
[15] 朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.