Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (6): 24-31    DOI: 10.13523/j.cb.20160604
研究报告     
miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1对卵巢癌细胞增殖的影响
秦海霞1, 崔红凯2, 潘莹3, 户瑞丽1, 朱利红1, 王世进1
1. 新乡医学院第一附属医院妇产科 卫辉 453100;
2. 新乡医学院第一附属医院介入科 卫辉 453100;
3. 新乡医学院第三附属医院 新乡 453000
miR-335 Regulate Cell Proliferation by Targeting Rho Associated Coiled-coil Forming Protein Kinase 1 in Ovarian Cancer Cells SKOV3
QIN Hai-xia1, CUI Hong-kai2, PAN Ying3, HU Rui-li1, ZHU Li-hong1, WANG Shi-jin1
1. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China;
2. Department of Interventional Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China;
3. Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
 全文: PDF(754 KB)   HTML
摘要:

目的: 探讨miR-335 靶向Rho相关卷曲螺旋形成蛋白激酶1(rho associated coiled-coil forming protein kinase 1,ROCK1)对卵巢癌细胞系SKOV3增殖的调控作用。方法:(1)选取卵巢癌细胞系SKOV3及人正常卵巢上皮细胞系IOSE80,采用RT-PCR检测各组细胞中miR-335表达;采用Western blot检测各组细胞中ROCK1蛋白表达;(2)选取卵巢癌细胞系SKOV3,分别转染miR-335 mimic及mimic control,采用RT-PCR检测细胞中miR-335表达;(3)选取卵巢癌细胞系SKOV3,将SKOV3荧光素酶报告载体与miR-335 mimic共转染,采用荧光素酶活性实验验证miR-335对SKOV3的靶向作用;(4)选取卵巢癌细胞系SKOV3,分为3组,即SKOV3组(转染mimic control)、miR-335 mimic组(转染miR-335 mimic)及miR-335 mimic+ROCK1组(共转染miR-335 mimic+ROCK1),采用MTT法检测各组细胞增殖活性,采用Western blot检测各组细胞中ROCK1蛋白表达,采用RT-PCR检测细胞中Cyclin D1表达。结果: (1)RT-PCR结果显示,卵巢癌细胞SKOV3中miR-335表达显著低于人正常卵巢上皮细胞IOSE80(P < 0.05);Western blot结果显示,卵巢癌细胞SKOV3中ROCK1蛋白表达显著高于人正常卵巢上皮细胞IOSE80(P < 0.05);(2)RT-PCR结果显示,转染miR-335 mimic可使卵巢癌细胞SKOV3中miR-335表达上调,与转染mimic control相比较差异具有统计学意义(P < 0.05);(3)双荧光素酶活性检测结果显示,miR-335 mimic可显著抑制野生型ROCK1-Wt报告载体的荧光素酶活性,但对突变型ROCK1-Mut报告载体的荧光素酶活性并无显著抑制作用;(4)转染miR-335mimic后,卵巢癌细胞SKOV3增殖活性及Cyclin D1表达较阴性对照组显著降低(P < 0.05);而转染miR-335 mimic+ROCK1后,卵巢癌细胞SKOV3增殖活性及Cyclin D1表达较单纯转染miR-335 mimic组显著提高(P < 0.05),但仍显著低于阴性对照组(P < 0.05)。Western blot检测结果显示,转染miR-335mimic后,卵巢癌细胞SKOV3中ROCK1蛋白表达较阴性对照组显著降低(P < 0.05);而转染miR-335 mimic+ROCK1后,ROCK1蛋白表达较单纯转染miR-335mimic组显著增高(P < 0.05),且显著高于阴性对照组(P < 0.05)。结论: miR-335可通过靶向ROCK1抑制卵巢癌细胞系SKOV3增殖。

关键词: miR-335靶向ROCK1细胞增殖卵巢癌    
Abstract:

Objective: To evaluate the effect of miR-335 target regulating rho associated coiled-coil forming protein kinase 1(ROCK1)on the cell proliferation of ovarian cancer cells SKOV3. Methods: (1)Chose ovarian cancer cells SKOV3 and human normal ovarian epithelial cells IOSE80 as research object. The miR-335 expression was detected by RT-PCR. The ROCK1 protein expression was detected by Western blot.(2)Chose ovarian cancer cells SKOV3 as research object, transfected miR-335 mimic and mimic control respectively. The miR-335 expression was detected by RT-PCR. (3)Chose ovarian cancer cells SKOV3 as research object, the SKOV3 luciferase report carrier and miR-335 mimic were co-transfection to SKOV3, and the targeting effect of miR-335 to SKOV3 was verified by luciferase activity experiment. (4)Chose ovarian cancer cells SKOV3 as research object, which is divided into three groups: SKOV3 group(transfection mimic control), miR-335 mimic group(transfection miR-335 mimic)and miR-335 mimic+ROCK1 group(co-transfection miR-335 mimic+ROCK1). The cell proliferation activity of each group were detected by MTT method. The ROCK1 protein expression was detected by Western blot. The Cyclin D1 expression was detected by RT-PCR. Results: (1)RT-PCR result showed that, the miR-335 expression of ovarian cancer cells SKOV3 significantly lower than human normal ovarian epithelial cells IOSE80(P < 0.05). Western blot result showed that, the ROCK1 protein expression of ovarian cancer cells SKOV3 significantly higher than human normal ovarian epithelial cells IOSE80(P < 0.05). (2)RT-PCR result showed that, transfection miR-335 mimic made miR-335 expression of ovarian cancer cells SKOV3 significantly increased, and significantly higher than transfection mimic control(P < 0.05).(3)Luciferase activity experiment result showed that, transfection miR-335 mimic made the luciferase activity of ROCK1-Wt significantly decreased, but not inhibited the luciferase activity of ROCK1-Mut.(4)After transfection miR-335 mimic, the proliferative activity of ovarian cancer cells SKOV3 and the expression of Cyclin D1 significantly lower than negative control(P < 0.05). After transfection miR-335 mimic+ROCK1, the proliferative activity of ovarian cancer cells SKOV3 and the expression of Cyclin D1 significantly higher than only transfection miR-335 mimic(P < 0.05), but still significantly lower than negative control(P < 0.05). Western blot result showed that, after transfection miR-335 mimic, the ROCK1 protein expression of ovarian cancer cells SKOV3 significantly lower than negative control(P < 0.05). After transfection miR-335 mimic+ROCK1, the ROCK1 protein expression of ovarian cancer cells SKOV3 significantly higher than only transfection miR-335 mimic(P < 0.05), and still significantly higher than negative control(P < 0.05). Conclusion: miR-335 can target ROCK1 to inhibit the proliferation activity of ovarian cancer cells SKOV3.

Key words: miR-335    Target    ROCK1    Cell proliferation    Ovarian cancer
收稿日期: 2015-12-14 出版日期: 2016-03-16
ZTFLH:  Q819  
基金资助:

河南省卫生厅科技攻关项目(200802009)、河南省教育厅自然科学研究计划(2008A320011)资助项目

通讯作者: 王世进     E-mail: 13569858153@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
秦海霞
崔红凯
潘莹
户瑞丽
朱利红
王世进

引用本文:

秦海霞, 崔红凯, 潘莹, 户瑞丽, 朱利红, 王世进. miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1对卵巢癌细胞增殖的影响[J]. 中国生物工程杂志, 2016, 36(6): 24-31.

QIN Hai-xia, CUI Hong-kai, PAN Ying, HU Rui-li, ZHU Li-hong, WANG Shi-jin. miR-335 Regulate Cell Proliferation by Targeting Rho Associated Coiled-coil Forming Protein Kinase 1 in Ovarian Cancer Cells SKOV3. China Biotechnology, 2016, 36(6): 24-31.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160604        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I6/24

[1] Bojesen S E, Pooley K A, Johnatty S E, et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45(4): 371-384.
[2] Burger R A, Brady M F, Bookman M A, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. New England Journal of Medicine, 2011, 365(26): 2473-2483.
[3] Perren T J, Swart A M, Pfisterer J, et al. A phase 3 trial of bevacizumab in ovarian cancer. New England Journal of Medicine, 2011, 365(26): 2484-2496.
[4] Buys S S, Partridge E, Black A, et al. Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. Jama, 2011, 305(22): 2295-2303.
[5] Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. New England Journal of Medicine, 2012, 366(15): 1382-1392.
[6] Ha M, Kim V N. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 2014, 15(8): 509-524.
[7] Zhu L, Chen L, Shi C M, et al. MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation. Cell Biochemistry and Biophysics, 2014, 68(2): 283-290.
[8] Cao J, Cai J, Huang D, et al. miR-335 represents an independent prognostic marker in epithelial ovarian cancer. American Journal of Clinical Pathology, 2014, 141(3): 437-442.
[9] Vigil D, Kim T Y, Plachco A, et al. ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer Research, 2012, 72(20): 5338-5347.
[10] Jeong K J, Park S Y, Cho K H, et al. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene, 2012, 31(39): 4279-4289.
[11] 韩志强, 洪振亚, 胡春霞, 等. 寡核苷酸阻断 ROCK-1 蛋白对人卵巢癌细胞恶性行为的影响. 中华肿瘤杂志, 2007, 29(10): 723-727. Han Z Q, Hong Z Y, Hu C X, et al. Effect of blocking of ROCK-1, an effector of small G protein Rho, on the malignant behavior of ovarian tumor cells in vitro. Chinese Journal of Oncology, 2007, 29(10): 723-727.
[12] Wang Y, Zhao W, Fu Q. miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells. Molecular and Cellular Biochemistry, 2013, 384(1-2): 105-111.
[13] Weiner-Gorzel K, Milewska M, Sharpe D, et al. Abstract A34: MiR-433 induces cellular senescence rendering ovarian cancer cells less likely to undergo chemotherapy-induced apoptosis. Clinical Cancer Research, 2015, 21(4): 34-35.
[14] Iorio M V, Croce C M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Molecular Medicine, 2012, 4(3): 143-159.
[15] Lim L, Balakrishnan A, Huskey N, et al. MicroRNA-494 within an oncogenic microRNA megacluster regulates G1/S transition in liver tumorigenesis through suppression of mutated in colorectal cancer. Hepatology, 2014, 59(1): 202-215.
[16] Kong W, He L, Richards E J, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene, 2014, 33(6): 679-689.
[17] 伍家燕, 高月, 曾帆, 等. miR-335 对 MDA-MB-231 乳腺癌细胞生物学特性的影响. 第三军医大学学报, 2015, 14(2): 3-5. Wu J Y, Gao Y, Zeng F, et al. Effect of miR-335 on biological behavior of breast cancer MDA-MB-231 cells. Journal of Third Military Medical University, 2015, 14(2): 3-5.
[18] Shu M, Zheng X, Wu S, et al. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer, 2011, 10(1): 59-60.
[19] Cao J, Cai J, Huang D, et al. miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. Oncology Reports, 2013, 30(2): 701-706.
[20] Maurer J, Castro D J, Kim M, et al. ROCK1 inhibition promotes the self-renewal of a novel mouse mammary cancer stem cell. Cancer Research, 2014, 74(19 Supplement): 3867-3867.
[21] 何彦丰. hsa-miR-125a-5p通过上调Rock-1表达促进胃癌细胞侵袭. 中国微生态学杂志,2014,12(2):1401-1404. He Y F. Hsa-miR-125a-5p promotes cell invasion by up-regulating Rock-1 in gastric cancer. Chinese Journal of Microecology, 2014,12(2):1401-1404.
[22] Vigil D, Kim T Y, Plachco A, et al. ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer Research, 2012, 72(20): 5338-5347.
[23] Gilkes D M, Xiang L, Lee S J, et al. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proceedings of the National Academy of Sciences, 2014, 111(3): 384-393.
[24] Kroiss A, Vincent S, Decaussin-Petrucci M, et al. Androgen-regulated microRNA-135a decreases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2. Oncogene, 2015, 34(22): 2846-2855.
[25] 王勇, 王科峰, 赵伟. miR-335 及 ROCK1 在骨肉瘤中表达及相互关系研究. 重庆医学, 2015, 44(16): 2170-2173. Wang Y, Wang K F, Zhao W. The expression and correlation of miR-335 and ROCK1 in osteosarcoma. Chongqing Medicine, 44(16): 2170-2173.
[26] 王勇, 王科峰, 赵伟. miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1抑制人骨肉瘤细胞MG-63侵袭转移的实验研究. 中国癌症杂志, 2014, 24(11): 801-804. Wang Y, Wang K F, Zhao W. miR-335 inhibits migration and invasion of human osteosarcoma cell line MG-63 by targeting ROCK1. China Oncology, 2014, 24(11): 801-804.

[1] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[2] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[3] 胡胜涛,张二兵,林也,张逢,黄丹,宋厚盼,刘斌,蔡雄. 经皮给药纳米载体及靶向系统治疗类风湿关节炎研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 98-106.
[4] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[5] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[6] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[7] 肖雪筠,唐奇,新华·那比. 靶向肿瘤微环境的CAR-T治疗研究*[J]. 中国生物工程杂志, 2020, 40(12): 67-74.
[8] 曹文杰,熊向源,龚妍春,李资玲,李玉萍. 高分子囊泡在药物释放体系的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 62-72.
[9] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[10] 苟理尧,刘梦瑶,夏菁,万群,孙恃雷,唐敏,张彦. 骨形成蛋白9对人膀胱癌BIU-87细胞增殖和迁移的影响[J]. 中国生物工程杂志, 2018, 38(5): 10-16.
[11] 黄翔,杨杰,何佩彦,吴志慧,曾慧兰,王新宁,蒋建伟. 白花地胆草单体EM-12诱导2774-C10细胞G1/S期阻滞及细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2018, 38(4): 17-23.
[12] 李依蔓,周钦. Herpud1对后肾间充质细胞的作用及其机制的探讨*[J]. 中国生物工程杂志, 2018, 38(3): 9-15.
[13] 冯源, 唐云, 徐蕾, 谭海刚. 海藻多糖通过下调肝癌细胞Hep3B糖酵解途径抑制细胞增殖和迁移[J]. 中国生物工程杂志, 2017, 37(9): 31-40.
[14] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[15] 明金玉, 李化丹, 梁士博, 何莉, 于青含, 李集临, 张延明. 植物功能性靶向基因标记的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 83-91.