Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (1): 75-81    DOI: 10.13523/j.cb.20150111
综述     
多靶向RNA干扰技术在基因治疗中的应用与前景
薛玉文1, 李铁军1,2, 周家名1, 陈莉1
1. 南通大学医学院 南通 226001;
2. 南通大学小核酸技术与应用研究所 南通 226016
The Application and Perspectives of Multi-target RNAi in the Research and Development of Gene Therapy
XUE Yu-wen1, LI Tie-jun1,2, ZHOU Jia-ming1, CHEN Li1
1. Department of Pathological Anatomy, Nantong University, Nantong 22601, China;
2. Small RNA Technology and Application Institute, Nantong University, Nantong 226016, China
 全文: PDF(667 KB)   HTML
摘要:

RNA干扰(RNA interference,RNAi)通过转录后基因沉默效应特异性抑制靶基因的表达,其沉默机制的高效性、特异性及稳定性使这项技术成为生物医学领域研究基因治疗的重要工具。阐述RNAi技术的特点和RNAi疗法的现状,特别是多靶小干扰RNA(small interference RNA,siRNA)目前的发展态势及其各种结构性修饰,通过使用这些结构修饰的siRNA提高基因沉默的效率,将有助于提高疗效。但该技术在广泛应用于临床之前,仍存在一些亟待解决的问题与面临的挑战,需进一步研究。

关键词: 多靶向siRNARNA干扰(RNAi)修饰基因治疗    
Abstract:

The expression of target genes can be inhibited by RNA interference (RNAi) specificity via post-transcriptional gene silencing (PTGS) effects. RNAi silencing mechanism with efficiency, specificity and stability allows it to become an important tool in biomedical field. The focus is on the characteristics of RNAi technology and recent development in RNAi-based therapeutics, in particular structural modifications and designs for multi-target siRNAs were reviewed. It is illustrated that multi-target based siRNA therapeutics opens up a new therapeutic strategy and may help to improve the effectiveness of treatment. However, there are still some problems and challenges needing further researches for its widely use in clinical treatments.

Key words: Multi-target    Small interfering    RNA (siRNA)    RNA interference (RNAi)    Modification Gene therapy
收稿日期: 2014-10-30 出版日期: 2015-01-25
ZTFLH:  R459.9  
基金资助:

江苏省产学研前瞻性联合研究项目(BY2013042-06),江苏省教育厅项目(14KJB310016),江苏省优势学科(PAPD)资助项目

通讯作者: 陈莉     E-mail: bl1@ntu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.

XUE Yu-wen, LI Tie-jun, ZHOU Jia-ming, CHEN Li. The Application and Perspectives of Multi-target RNAi in the Research and Development of Gene Therapy. China Biotechnology, 2015, 35(1): 75-81.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150111        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I1/75


[1] Wu J, Huang W, He Z. Dendrimers as carriers for siRNA delivery and gene silencing: a review. Scientific World Journal, 2013(2013):630 654.

[2] Snøve O Jr, Rossi J J. Expressing short hairpin RNAs in vivo. Nat Methods, 2006, 3(9):689-695.

[3] Czauderna F, Fechtner M, Dames S,et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res, 2003, 31(11):2705-2716.

[4] Ge Q, Ilves H, Dallas A, et al. Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA, 2010, 16(1):106-117.

[5] Seo M, Lee S, Kim J H, et al. RNAi-based functional selection identifies novel cell migration determinants dependent on PI3K and AKT pathways. Nat Commun, 2014,5:5217.

[6] Abe N, Abe H, Ito Y. Dumbbell-shaped nanocircular RNAs for RNA interference. J Am Chem Soc, 2007, 129(49):15108-15109.

[7] Sørensen D R, Sioud M. Systemic delivery of synthetic siRNAs. Methods Mol Biol, 2010, 629:87-91.

[8] Kaiser P K, Symons R C, Shah SM, et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol, 2010, 150(1):33-39.

[9] Heidel J D, Yu Z, Liu J Y, et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A, 2007, 104(14):5715-5721.

[10] Leachman S A, Hickerson R P, Schwartz M E, et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther, 2010, 18(2):442-446.

[11] Burnett J C, Rossi J J, Tiemann K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J, 2011, 6(9):1130-1146.

[12] Zimmermann T S, Lee A C, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature, 2006, 441(7089):111-114.

[13] Davis M E, Zuckerman J E, Choi C H, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291):1067-1070.

[14] Efferth T, Koch E. Complex interactions between phytochemicals. the multi-target therapeutic concept of phytotherapy. Curr Drug Targets, 2011, 12(1):122-132.

[15] Lahoute C, Herbin O, Mallat Z, et al. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol, 2011, 8(6):348-358.

[16] Lu J J, Pan W, Hu Y J, et al. Multi-target drugs: the trend of drug research and development. PLoS One, 2012, 7(6):e40262.

[17] Maes M, Fiar Z, Medina M, et al. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology, 2012, 20(3):127-150.

[18] Flight M H. Neurodegenerative diseases: new kinase targets for Alzheimer's disease. Nat Rev Drug Discov, 2013, 12(10):739.

[19] Ji J, Wernli M, Klimkait T, et al. Enhanced gene silencing by the application of multiple specific small interfering RNAs. FEBS Lett, 2003, 552(2-3):247-252.

[20] Menendez J A, Vellon L, Mehmi I, et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci U S A, 2004, 101(29):10715-10720.

[21] Tai W, Qin B, Cheng K. Inhibition of breast cancer cell growth and invasiveness by dual silencing of HER-2 and VEGF. Mol Pharm, 2010, 7(2):543-556.

[22] 汤禾静, 唐照勇, 刘隆兴,等. siRNA联合沉默MMP9和FAK基因对小鼠黑色素瘤高转移细胞B16F10体外侵袭和迁移的影响. 中国生物工程杂志, 2014, 34(9):40-47. Tang H J, Tang Z Y, Liu L X, et al. Effect of siRNA combined silencing MMP-9 and FAK on invasion and migration of mouse melanoma highly metastatic cells B16F10 in vitro. China Biotechnology, 2014, 34(9):40-47.

[23] Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides, 2003, 13(5):303-312.

[24] Gondi C S, Lakka S S, Dinh D H, et al. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene, 2004, 23(52):8486-8496.

[25] Kargiotis O, Chetty C, Gogineni V, et al. uPA/uPAR downregulation inhibits radiation-induced migration, invasion and angiogenesis in IOMM-Lee meningioma cells and decreases tumor growth in vivo. Int J Oncol, 2008, 33(5):937-947.

[26] Kunigal S, Lakka S S, Gondi C S, et al. RNAi-mediated downregulation of urokinase plasminogen activator receptor and matrix metalloprotease-9 in human breast cancer cells results in decreased tumor invasion, angiogenesis and growth. Int J Cancer, 2007, 121(10):2307-2316.

[27] Rice R R, Muirhead A N, Harrison B T, et al. Simple, robust strategies for generating DNA-directed RNA interference constructs. Methods Enzymol, 2005, 392:405-419.

[28] Akashi H, Miyagishi M, Yokota T, et al. Escape from the interferon response associated with RNA interference using vectors that encode long modified hairpin-RNA. Mol Biosyst, 2005, 1(5-6):382-390.

[29] Liu Y P, Haasnoot J, Berkhout B. Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res, 2007, 35(17):5683-5693.

[30] Sano M, Li H, Nakanishi M, et al. Expression of long anti-HIV-1 hairpin RNAs for the generation of multiple siRNAs: advantages and limitations. Mol Ther, 2008, 16(1):170-177.

[31] Lee S H, Mok H, Jo S, et al. Dual gene targeted multimeric siRNA for combinatorial gene silencing. Biomaterials, 2011, 32(9):2359-2368.

[32] Frieden M, Aviñó A, Tarrasón G, et al. Synthesis of oligonucleotide-peptide conjugates carrying the c-myc peptide epitope as recognition system. Chem Biodivers, 2004, 1(6):930-938.

[33] Aviñó A, Ocampo S M, Perales J C, et al. Branched RNA: a new architecture for RNA interference. J Nucleic Acids, 2011, 2011(2011),ID586935.

[34] Chang C I, Lee T Y, Kim S, et al. Enhanced intracellular delivery and multi-target gene silencing triggered by tripodal RNA structures. J Gene Med. 2012, 14(2):138-146.

[35] Nakashima Y, Abe H, Abe N, et al. Branched RNA nanostructures for RNA interference. Chem Commun (Camb), 2011, 47(29):8367-8369.

[36] Shin D, Lee H, Kim S I, et al. Optimization of linear double-stranded RNA for the production of multiple siRNAs targeting hepatitis C virus. RNA, 2009, 15(5):898-910.

[37] Suhy D A, Kao S C, Mao T, et al. Safe, long-term hepatic expression of anti-HCV shRNA in a nonhuman primate model. Mol Ther, 2012, 20(9):1737-1749.

[38] Chang C I, Kang H S, Ban C, et al. Dual-target gene silencing by using long, synthetic siRNA duplexes without triggering antiviral responses. Mol Cells, 2009, 27(6):689-695.

[39] Wu Y Y, Chen L, Wang G L, et al. Inhibition of hepatocellular carcinoma growth and angiogenesis by dual silencing of NET-1 and VEGF. J Mol Histol, 2013, 44(4):433-445.

[40] Peng W, Chen J, Qin Y, et al. Long double-stranded multiplex siRNAs for dual genes silencing. Nucleic Acid Ther, 2013, 23(4):281-288.

[41] Chang C I, Lee T Y, Yoo J W, et al. Branched, tripartite-interfering RNAs silence multiple target genes with long guide strands. Nucleic Acid Ther, 2012, 22(1):30-39.

[42] 蒋婷婷, 温晓霞, 陈尧. 沉默 c2orf68 基因对结直肠癌细胞增殖的影响. 中国生物工程杂志, 2014, 34(2):7-13. Jiang T T, Weng X X, Chen Y. Effect of silencing c2orf68 gene on the proliferation of colorectal adenocarcinoma cells. China Biotechnology, 2014, 34(2):7-13.

[43] 王鑫, 陈玲, 陆航,等. RNAi沉默CXCR7对人结肠癌细胞 SW620特异性靶向抑制的实验研究.中国生物工程杂志, 2014, 34(2):14-20. Wang X, Chen L, Lu H, et al. Experimental study of specific targeted inhibition from RNAi silencing CXCR7 to human colon cancer cell SW620. China Biotechnology, 2014, 34(2):14-20.

[44] Qin J, Xu Y, Li X, et al. Effects of lentiviral-mediated Foxp1 and Foxq1 RNAi on the hepatocarcinoma cell. Exp Mol Pathol, 2014, 96(1):1-8.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 杨万斌,徐燕,卓士铉,王心怡,李雅静,郭一凡,张正光,郭园园. 长链非编码RNA相关表观遗传修饰在癌症中的进展*[J]. 中国生物工程杂志, 2021, 41(8): 59-66.
[3] 刘少金,冯雪娇,王俊姝,肖正强,程平生. 我国核酸药物市场分析及对策建议[J]. 中国生物工程杂志, 2021, 41(7): 99-109.
[4] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[5] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[6] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[7] 杨若南,许丽,徐萍,苏燕. RNA疗法产业发展态势分析及建议 *[J]. 中国生物工程杂志, 2021, 41(2/3): 162-171.
[8] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[9] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[10] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[11] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[12] 徐欢,周美玲,葛琳,王志明. 人血清白蛋白在蛋白多肽类药物长效化中的应用 *[J]. 中国生物工程杂志, 2019, 39(1): 82-89.
[13] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[14] 张宸, 陈韶华, 吴文倩, 周建芹. 微生物谷氨酰胺转氨酶催化细胞色素c赖氨酸残基的定点修饰[J]. 中国生物工程杂志, 2017, 37(9): 82-88.
[15] 徐振宇, 任红艳, 毕延震, 郑新民, 李莉, 张佳兰. 单细胞PCR体系的建立及其在CRISPR/Cas9靶点活性检测中的应用[J]. 中国生物工程杂志, 2017, 37(2): 74-80.