Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (3): 83-91    DOI: 10.13523/j.cb.20170312
综述     
植物功能性靶向基因标记的研究进展
明金玉, 李化丹, 梁士博, 何莉, 于青含, 李集临, 张延明
哈尔滨师范大学生命科学与技术学院 黑龙江省分子细胞遗传与遗传育种重点实验室 哈尔滨 150025
Research Progress in the Development of Plant Functional Target Gene Markers
MING Jin-yu, LI Hua-dan, LIANG Shi-bo, HE Li, YU Qin-han, LI Ji-lin, ZHANG Yan-ming
College of Life Science and Technology, Harbin Normal University, Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150025, China
 全文: PDF(1230 KB)   HTML
摘要:

随着功能基因组学的发展,分子标记技术正朝着功能性靶向基因标记的方向发展。因功能标记是根据与表型紧密相关的功能基因内部特定区域多态性基序开发而来的,所以此类标记不需要进一步的验证就可在不同的遗传背景下确定等位基因的有无。从靶向基因标记和功能标记、保守DNA和基因家族标记、转座子标记、抗性基因标记、RNA标记和靶向指纹标记几方面综述了植物功能性靶向基因标记的研究进展,旨在为分子标记的开发与应用提供理论基础。

关键词: 靶向基因标记基因组功能性分子标记    
Abstract:

With the development of functional genomics, molecular marker technology is moving towards the direction of functional target marker genes. Functional marker is developed according to the specific region polymorphism motif of functional genes closely related to phenotype. Since these functional markers are directly derived from functional motifs within the gene, these markers do not require further validation to determine whether alleles are available in different genetic backgrounds.Gene-targeted and functional marker, conserved DNA and gene family based markers, transposable element based markers, resistance-gene based markers, RNA-based markers and targeted fingerprinting markers were discussed, which are aimed at providing a theoretical basis for the development and application of molecular markers.

Key words: Functional molecular marker    Genome    Targeted gene marker
收稿日期: 2016-11-26 出版日期: 2017-03-25
ZTFLH:  Q789  
基金资助:

国家重点研发计划(2016YFD0100102-16),黑龙江省大学生创新创业训练计划重点项目(201610231024)资助项目

通讯作者: 张延明     E-mail: blueright@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

明金玉, 李化丹, 梁士博, 何莉, 于青含, 李集临, 张延明. 植物功能性靶向基因标记的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 83-91.

MING Jin-yu, LI Hua-dan, LIANG Shi-bo, HE Li, YU Qin-han, LI Ji-lin, ZHANG Yan-ming. Research Progress in the Development of Plant Functional Target Gene Markers. China Biotechnology, 2017, 37(3): 83-91.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170312        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I3/83

[1] Henry R J. Plant Genotyping:the DNA Fingerprinting of Plants. Wallingford,UK:CABI, 2001.
[2] van Tienderen P H, De haan A A, Van der Linden C G, et al. Biodiversity assessment using markers for ecologically important traits. Trends Ecology Evolution, 2002, 17(12):577-582.
[3] Pang M X, Percy R G, Hughs E, et al. Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAP-RAPD) in cotton. Euphytica, 2009, 167(3):281-291.
[4] Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18(22):6531-6535.
[5] Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPDs, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996, 2(3):225-238.
[6] Cardle L, Ramsay L, Milboume D, et al. Computation and experimental characterization of physically clustered simple sequence repeats in plants. Genetices, 2000, 156(2):847-854.
[7] Wang D G, Fan J B, Siao C J, et al. Large-scale identification mapping and genotyping of single nucleotide polymorphisms in the human genome. Science, 1998, 280(5366):1077-1082.
[8] Rafalski J A, Tingey S V. Genetic diagnostics in plant breeding:RAPDs, microsatellites and machines. Trend Genet, 1993, 9:275-280.
[9] Andersen J R, Lübberstedt T. Functional markers in plants. Trends in Plant Science, 2003, 8(11):554-560.
[10] Arnaud-Haond S, Alberto F, Teixeira S, et al. Assessing genetic diversity in clonal organisms:low diversity or low resolution? Combining power and cost efficiency in selecting markers. Journal of Heredity, 2005, 96(4):434-440.
[11] Varshney R K, Mahendar T, Aggarwal R K. Genic Molecular Markers in Plants:Development and Applications. In:Varshney R K, Tuberosa R.Genomic-assisted Crop Improvement:vol.1. Genomics Approaches and Platforms. New York:Springer, 2007:13-29.
[12] 王昊龙, 韩俊杰, 李淼淼,等.功能标记的开发及在禾谷类作物中的应用. 核农学报, 2014, 28(11):1963-1971. Wang H L, Han J J, Li M M, et al. Development and application of functional markers in cereal crops. Journal of Nuclear Agricultural Sciences, 2014, 28(11):1963-1971.
[13] Panwar P, Saini R K, Sharma N, et al. Efficiency of RAPD, SSR and cytochrome P450 gene based markers in accessing genetic variability amongst finger millet (Eleusine coracana) accessions. Molecular Biology Reports, 2010, 37(8):4075-4082.
[14] Schalk M, Nedelkina S, Schoch G, et al. Role of unusual amino acid residues in the proximal and distal heme regions of a plant P450, CYP73A1. Biochemistry, 1999, 38(19):6093-6103.
[15] Collard B C Y, Mackill D J. Conserved DNA-derived polymorphism (CDDP):a simple and novel method for generating DNA markers in plants. Plant Molecular Biology Reporter, 2009, 27(4):558-562.
[16] Galasso I, Manca A, Braglia L, et al. h-TBP:an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. Molecular Breeding, 2011, 28(4):635-645.
[17] Weining S, Langridge P. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theoretical and Applied Genetics. Theoretische und angewandte Genetik, 1991, 82(2):209-216.
[18] Bardini M, Lee D, Donini P, Mariani A. Tubulin-based polymorphism (TBP):a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome, 2004, 291:281-291.
[19] Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology, 1999, 41(5):577-585.
[20] Feschotte C, Jiang N, Wessler S R. Plant transposable elements:where genetics meets genomics. Nature Reviews Genetics, 2002, 3(5):329-341.
[21] Hill P, Burford D, Martin D M A, et al. Retrotransposon populations of Vicia species with varying genome size. Molecular Genetics and Genomics Mgg, 2005, 273(5):371-381.
[22] Finnegan D J. Eukaryotic transposable elements and genome evolution. Trends in Genetics, 1989, 5(4):103-107.
[23] Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8(12):973-982.
[24] Kumar A, Bennetzen J L. Plant retrotransposons. The Annual Review of Genetics, 1999, 33(1):479-532.
[25] Kenward K D, Bai D, Ban M R, et al. Isolation and characterization of Tnd-1, a retrotransposon marker linked to black root rot resistance in tobacco. Theoretical and Applied Genetics, 1999, 98(3):387-395.
[26] Kalendar R, Grob T, Regina M, et al. IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics, 1999, 98(5):704-711.
[27] Branco C J S, Vieira E A, Malone G, et al. IRAP and REMAP assessments of genetic similarity in rice. Journal of Applied Genetics, 2007, 48(2):107-113.
[28] Seibt K M, Wenke T, Wollrab C, et al. Development and application of SINE-based markers for genotyping of potato varieties. Theoretical and Applied Genetics. Theoretische und angewandte Genetik, 2012, 125(1):185-196.
[29] Kalendar R, Antonius K, Smý kal P, et al. iPBS:a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, Theoretische und angewandte Genetik, 2010,121:1419-1430.
[30] Waugh R, McLean K, Flavell A J, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Molecular and General Genetics Mgg, 1997, 253(6):687-694.
[31] Tam S M, Mhiri C, Vogelaar A, et al. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theoretical and Applied Genetics, 2005, 110(5):819-831.
[32] Schulman AH. Molecular markers to assess genetic diversity. Euphytica, 2006,158(3):313-321.
[33] Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444(7117):323-329.
[34] Wolpert T J, Dunkle L D, Ciuffetti L M. Host-selective toxins and avirulence determinants:what's in a name?. Annual Review Phytopathology, 2002, 40(1):251-285.
[35] Gebhardt C, Valkonen J P. Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology, 2001, 39(4):79-102.
[36] Tian Y P, Valkonen J P. Genetic determinants of Potato virus Y required to overcome or trigger hypersensitive resistance to PVY strain group O controlled by the gene Ny in potato. Molecular Plant Microbe Interact, 2012,26(3):297-305.
[37] van Ooijen G, van den Burg H A, Cornelissen B J C, et al. Structure and function of resistance proteins in solanaceous plants. Annual Review Phytopatholy, 2007, 45(1):43-72.
[38] Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology, 2003, 54(1):23-61.
[39] Takken F L, Albrecht M, Tameling W I. Resistance proteins:molecular switches of plant defence. Current Opinion in Plant Biology, 2006, 9(4):383-390.
[40] Brugmans B, Wouters D, van Os H, et al. Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling. Theoretical and Applied Genetics, 2008, 117(8):1379-1388.
[41] Wang M, Berg R, Linden G, Vosman B. The utility of NBS profiling for plant systematics:a first study in tuber-bearing Solanum species. Plant Systematics and Evolution, 2008, 276(1-2):137-148.
[42] van der Linden C G, Wouters D C A E, Mihalka V, et al. Efficient targeting of plant disease resistance loci using NBS profiling. Theoretical and Applied Genetics, 2004, 14(2):421-429.
[43] Gebhardt C, Bellin D, Henselewski H, et al. Marker-assisted combination of major genes for pathogen resistance in potato. Theoretical and Applied Genetics, 2006, 112(8):1458-1464.
[44] Gupta P K, Rustgi S. Molecular markers from the transcribed/expressed region of the genome in higher plants. Functional and Integrative Genomics, 2004, 4(3):139-162.
[45] Gui Y, Yan G, Bo S, et al. iSNAP:a small RNA-based molecular marker technique. Plant Breeding, 2011, 130(5):515-520.
[46] Bachem C, Oomen R, Visser R. Transcript imaging with cDNA-AFLP:a stepby-step protocol. Plant Molecular Biology Reporter, 1998, 16(2):157-173.
[47] Xiao X, Li H, Tang C. A silver-staining cDNA-AFLP protocol suitable for transcript profiling in the latex of Hevea brasiliensis (para rubber tree). Molecular Biotechnology, 2009, 42(1):91-99.
[48] Song Y, Wang Z, Bo W, et al. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis. BMC Genomics, 2012, 13(1):286.
[49] Brugmans B, Fernandez del Carmen A, Bachem C W B, et al. A novel method for the construction of genome wide transcriptome maps. Plant Journal, 2002, 31(2):211-222.
[50] Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002, 160(4):1651-1659.
[51] Suárez M C, Bernal A, Gutiérrez J, et al. Developing expressed sequence tags (ESTs) from polymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz). Genome, 2000, 43(1):62-67.
[52] Bryan G J, Stephenson P, Collins A, et al. Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theoretical and Applied Genetics, 1999,99(1-2):192-198.
[53] Gentzbittel L, Mestries E, Mouzeyar S, et al. A composite map of expressed sequences and phenotypic traits of the sunflower (Helianthus annuus L.) genome. Theoretical and Applied Genetics, 1999, 99(1-2):218-234.
[54] Akhunov E D, Goodyear A W, Geng S, et al. The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Research, 2003, 13(5):753-763.
[55] Woodhead M, Russell J, Squirrell J, et al. Development of EST-SSRs from the alpine lady-fern, Athyrium distentifolium. Molecular Ecology Notes, 2003, 3(2):287-290.
[56] Cho Y G, Ishii T, Trmnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2000, 100(5):713-722.
[57] Eujayl I, Sledge M K, Wang L, et al. Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theoretical and Applied Genetics, theoretische und angewandte Genetik, 2004, 108(3):414-422.

[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[3] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[4] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[9] 姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.
[10] 程子昭,陈楚楚,应磊,李校堃,黄志锋. 冠状病毒基因组特征及感染特点比较*[J]. 中国生物工程杂志, 2020, 40(11): 56-66.
[11] 陈军,郑华军,刘亚铭,赵国屏,秦松. 雨生红球藻低覆盖度基因组草图分析 *[J]. 中国生物工程杂志, 2018, 38(7): 21-28.
[12] 唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.
[13] 付理文, 张宇, 依含, 李雪, 朱乃硕. Taqman多重实时荧光PCR同步定量检测6种动物源性成分方法的建立[J]. 中国生物工程杂志, 2017, 37(9): 48-59.
[14] 宋佳雯, 田苏, 张玉如, 王志珍, 常忠义, 高红亮, 步国建, 金明飞. 基因组重排筛选高产谷氨酰胺转胺酶菌株[J]. 中国生物工程杂志, 2017, 37(9): 105-111.
[15] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.