Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (7): 79-89    DOI: 10.13523/j.cb.2203042
    
Metabolic Regulations and Applications of Cofactors in Microbial Cell Factories
Nan JIA1,Guo-wei ZANG1,Chun LI1,2,**(),Ying WANG1,**()
1. Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology,Institute of Biochemical Engineering,School of Chemistry and Chemical Engineering,Beijing Institute of Technology,Beijing 100081,China
2. Department of Chemical Engineering,Tsinghua University,Beijing 100084,China
Download: HTML   PDF(2533KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Most of the enzyme-catalyzed reactions in organisms require the participation of cofactors. The balance of cofactors is essential to maintain normal cellular metabolism, and the imbalance of cofactors can lead to the inhibition of cell growth and production. In the construction of microbial cell factories, it has been considered to be an important strategy to regulate the balance of cofactor metabolism since the cofactor regulation could be employed to improve the efficiency of synthetic pathway of products and thus balance the cell growth and products synthesis, achieving the maximum metabolic flux towards the target products. Common cofactors currently used for metabolic regulation include NAD(P)H/NAD(P)+, coenzyme, and ATP/ADP. The metabolic pathways and functional classifications of these cofactors are reviewed, and the studies on the synthesis regulation of different products in microorganisms using cofactor balancing strategies are summarized. This paper will provide references for the efficient biosynthesis of various compounds.



Key wordsCofactor engineering      Microbial cell factory      Metabolic engineering      Biological manufacturing     
Received: 18 March 2022      Published: 03 August 2022
ZTFLH:  Q819  
Corresponding Authors: Chun LI,Ying WANG     E-mail: wy2015@bit.edu.cn;lichun@tsinghua.edu.cn
Cite this article:

Nan JIA,Guo-wei ZANG,Chun LI,Ying WANG. Metabolic Regulations and Applications of Cofactors in Microbial Cell Factories. China Biotechnology, 2022, 42(7): 79-89.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2203042     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I7/79

Fig.1 Key metabolic pathways for cofactors
代谢产物 辅因子 底盘细胞 调控优化策略 效果
异戊二烯 NADPH Escherichia coli 引入1,3-丙二醇合成途径,使过量的NADPH被利用 异戊二烯和1,3-丙二醇产量分别提升3.3倍和4.3倍[44]
2,3-丁二醇 NADH Saccharomyces
cerevisiae
过表达乳酸乳球菌Lactococcus lactis来源的NADH氧化酶基因noxE,消耗过量的NADH 2,3-丁二醇产量提高1.3倍[31]
2,3-丁二醇 NADH Bacillus subtilis 过表达可溶性转氢酶基因udhA,促进NADH再生;敲除乳酸脱氢酶基因ldh,减少NADH的消耗 2,3-丁二醇产量提高22.82%[46]
异丁醇 NAD(P)H Shimwellia blattae 引入NADH依赖性乙醇脱氢酶AdhA来降低对NADPH的依赖;过表达转氢酶PntAB,增加NADPH水平 AdhA和PntAB的表达分别将异丁醇收率从11.9%提高到14.4%和16.4%[42]
异丁醇 NADPH Bacillus
licheniformis
过表达来自苏云金芽孢杆菌B. thuringiensis的NADP+依赖性甘油醛-3-磷酸脱氢酶的基因gapN,促进NADPH再生 异丁醇产量从7.52 g/L增加到7.81 g/L,胞内NADPH/NADP+值比出发菌株提高了1.3倍[43]
7-脱氢胆固醇 NADH Saccharomyces
cerevisiae
过表达来自肺炎链球菌Streptococcus pneumoniae的NADH氧化酶NOX和荚膜组织胞浆菌Histoplasma capsulatum的交替氧化酶AOX1,消耗过量的NADH 7-脱氢胆固醇产量增加了74.4%[41]
乙偶姻 NADH Candida glabrata 过表达乳酸乳球菌Lactococcus lactis来源的NADH氧化酶NOX,消耗过量的NADH 乙偶姻产量提高2.3倍[39]
D-葡糖二酸 NADH Escherichia coli 过表达戊糖乳杆菌Lactobacillus pentosus来源的NADH氧化酶,消耗过量的NADH D-葡糖二酸产量从4.56g/L提高到5.12 g/L[40]
聚-γ-谷氨酸 NAD(P)H Bacillus
licheniformis
获得谷氨酸脱氢酶突变体RocGD276E,辅因子偏好性从NADPH转变为NADH 产量增加了40.50%,副产物乙偶姻和2,3-丁二醇产率分别下降21.70%和16.53%[38]
赖氨酸 NADH Corynebacterium
glutamicum
鉴定了四种NADH脱氢酶:PaASPDH、TmASADH、EcDHDPR和PtDAPDH,赖氨酸合成可利用NADH 在菌株LC298中分别过表四种NADH脱氢酶,赖氨酸的产量分别增加了30.7%、32.4%、17.4%和36.8%[47]
2-苯乙醇 NAD(P)H Escherichia coli 将谷氨酸脱氢酶与转氨酶和乙醇脱氢酶偶联,开发辅因子自给自足系统 2-苯乙醇生物催化效率提高了3.8倍[48]
1,3-丙二醇 NADH Pseudomonas
denitrificans
敲除编码NADH脱氢酶I的nuo操纵子基因和NADH脱氢酶II的ndh基因,降低NADH的氧化 1,3-丙二醇的产率达到0.89 mol/mol甘油[35]
丙酮酸 NADH Saccharomyces
cerevisiae
过表达来自大肠杆菌的可溶性转氢酶基因udhA,促进NADH生成 丙酮酸产量达到75.1 g/L,与原始菌株相比增加了21%[49]
丁醇 NAD(P)H Clostridium sp. 在培养基中添加不同剂量L-色氨酸,作为辅因子NAD(P)H生产途径的前体 细胞内NADH和NADPH的水平增加了67%[45]
ω-羟基棕
榈酸
NADH Escherichia coli 过表达念珠菌Candida boidinii的NAD+依赖性甲酸脱氢酶FDH,敲除乙醇脱氢酶ADH,促进NADH再生 NADH的量达到610 mg/L,与对照相比产量几乎增加了3倍[50]
白桦酸 NAD(P)H Yarrowia lipolytica 过表达外源苹果酸酶EMC、EMT、Rtme和3-磷酸甘油醛脱氢酶Gapc,增强NAD(P)H的供应 桦木酸的最终产量达到51.87 mg/L[51]
L-缬氨酸 NAD(P)H Escherichia coli 乙酰羟酸异构还原酶被偏好NADH的突变体取代,支链氨基酸氨基转移酶被枯草芽孢杆菌Bacillus subtilis的亮氨酸脱氢酶取代,重新平衡NAD(P)H/NAD(P)+ L-缬氨酸产量由1.63 g/L提高到10.77 g/L[33]
Table 1 Regulation strategies for NAD(P)H cofactor
代谢产物 辅因子 底盘细胞 调控优化策略 效果
4-羟基苯
乙酸
NADPH Escherichia coli 通过CRISPRi抑制消耗NADPH酶编码基因的表达 敲除NADPH依赖性醛还原酶基因yahK,4-羟基苯乙酸产量提高了67.1%[34]
N-乙酰葡
糖胺
NAD(P)H Corynebacterium
glutamicum
通过定点诱变将NAD+依赖性的3-磷酸甘油醛脱氢酶和苹果酸脱氢酶的转变为NADP+依赖性的酶 摇瓶中N-乙酰葡糖胺的产量从27.5 g/L提高到36.9 g/L[37]
甲羟戊酸 NAD(P)H Escherichia coli 敲除磷酸葡萄糖异构酶基因pgi,使碳通量更多地流向戊糖磷酸途径以生成更多NADPH 胞内NADPH/NADP+值比野生型高约7倍[36]
 
代谢产物 底盘细胞 调控优化策略 效果
香叶醇 Saccharomyces
cerevisiae
将线粒体中的乙酰辅酶A作为底物,靶向香叶醇生物合成途径至线粒体 香叶醇产量提高6倍[57]
1-十六烷醇 Saccharomyces
cerevisiae
过表达拟南芥来源的柠檬酸裂解酶ACL,促进乙酰辅酶A的合成 将1-十六烷醇产量从140 mg/L增加到217 mg/L[71]
正丁醇 Saccharomyces
cerevisiae
过表达胺氧化酶Fms1编码基因,提高胞内前体辅酶A的含量 正丁醇产量从165 mg/L提高到243 mg/L[72]
游离脂肪酸 Saccharomyces
cerevisiae
使3-磷酸甘油脱氢酶失活,碳通量重定向到丙酮酸和乙醛;过表达来源于解脂耶氏酵母的柠檬酸裂解酶ACL,促进乙酰辅酶A合成 两种代谢调控策略分别使游离脂肪酸产量提高23%和26%[73]
1-丁醇 Saccharomyces
cerevisiae
过表达乙醛脱氢酶ALD6和乙醇脱氢酶ADH2,过表达肠沙门菌Salmonella enterica来源的乙酰辅酶A合酶突变体ACSL641P,促进乙酰辅酶A合成 将1-丁醇产量从2 mg/L增加到10.3 mg/L[60]
三乙酸内酯 Saccharomyces
cerevisiae
引入大肠杆菌PDH旁路基因,促进乙酰辅酶A的合成 乙酰辅酶A水平提高2倍,三乙酸内酯产量提高30%[74]
β-香树脂醇 Saccharomyces
cerevisiae
敲除柠檬酸合酶CIT2编码基因,减少乙酰辅酶A的消耗 β-香树脂醇产量提高了近330%[59]
α-葎草烯 Saccharomyces
cerevisiae
以过氧化物酶体乙酰辅酶A为底物,将α-葎草烯生物合成途径重新定位至过氧化物酶体 α-葎草烯产量提高2.5倍[58]
(2S)-柚皮素 Saccharomyces
cerevisiae
过表达过氧化物酶体增殖蛋白PEX11编码基因,增强脂肪酸的β氧化,增加乙酰辅酶A供应 (2S)-柚皮素产量提高了30.26%[75]
聚-β-羟丁酸 Escherichia coli 对糖酵解途径进行改造,过表达磷酸丙酮异构酶基因tpiA和果糖二磷酸醛缩酶基因fbaA 聚-β-羟丁酸产量从0.4 g/L提高到1.6 g/L[68]
丙二酰辅酶A Escherichia coli 改造三羧酸循环途径,敲除延胡索酸酶基因fumB/C或琥珀酰辅酶A合成酶基因sucC 丙二酰辅酶A产量为4.43 μmol/g DW,提高了近4倍[69]
3-羟基丙酸 Escherichia coli 改造β氧化途径,敲除脂肪酸氧化调节因子基因fadR,过表达脂酰辅酶A脱氢酶基因fadE、脂酰辅酶A合酶基因fadD、脂肪酸氧化酶基因fadBA、脂肪酸外膜孔蛋白基因fadL 3-羟基丙酸产量最终达到52 g/L[70]
香草醛 Escherichia coli 改造乙醛酸途径,敲除异柠檬酸脱氢酶IDH,增加乙酰辅酶A通量 香草醛的产量从0.79 g/L提高到了2.06 g/L[76]
Table 2 Regulation strategies for acetyl-CoA in Saccharomyces cerevisiae and Escherichia coli
[1]   Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446): 528-532.
doi: 10.1038/nature12051
[2]   Wang P P, Wei W, Ye W, et al. Synthesizing ginsenoside Rh 2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discovery, 2019, 5: 5.
doi: 10.1038/s41421-018-0075-5
[3]   Zhu M, Wang C X, Sun W T, et al. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metabolic Engineering, 2018, 45: 43-50.
doi: 10.1016/j.ymben.2017.11.009
[4]   Wang Y, Hu L T, Huang H, et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nature Communications, 2020, 11: 3120.
doi: 10.1038/s41467-020-16962-7
[5]   陈涣兰, 音提扎尔·吐尔逊买买提, 路婧, 等. 辅因子工程在微生物代谢中的应用进展. 食品与发酵科技, 2021, 57(6): 60-66.
[5]   Chen H L, Yintizhaer T, Lu J, et al. Application progress of cofactor engineering in the microbial metabolism. Food and Fermentation Sciences & Technology, 2021, 57(6): 60-66.
[6]   Wang M, Chen B Q, Fang Y M, et al. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnology Advances, 2017, 35(8): 1032-1039.
doi: 10.1016/j.biotechadv.2017.09.008
[7]   Chen X L, Li S B, Liu L M. Engineering redox balance through cofactor systems. Trends in Biotechnology, 2014, 32(6): 337-343.
doi: 10.1016/j.tibtech.2014.04.003
[8]   Park J, Choi Y. Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: a mini review. Frontiers of Chemical Science and Engineering, 2017, 11(1): 66-71.
doi: 10.1007/s11705-016-1591-1
[9]   Liu J H, Li H L, Zhao G R, et al. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. Journal of Industrial Microbiology and Biotechnology, 2018, 45(5): 313-327.
doi: 10.1007/s10295-018-2031-7
[10]   Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Journal of Biological Chemistry, 2004, 279(8): 6613-6619.
doi: 10.1074/jbc.M311657200 pmid: 14660605
[11]   Wang Y P, San K Y, Bennett G N. Cofactor engineering for advancing chemical biotechnology. Current Opinion in Biotechnology, 2013, 24(6): 994-999.
doi: 10.1016/j.copbio.2013.03.022
[12]   Akhtar M K, Jones P R. Cofactor engineering for enhancing the flux of metabolic pathways. Frontiers in Bioengineering and Biotechnology, 2014, 2: 30.
doi: 10.3389/fbioe.2014.00030 pmid: 25221776
[13]   Kirschning A. Coenzymes and their role in the evolution of life. Angewandte Chemie International Edition, 2021, 60(12): 6242-6269.
[14]   王志鹏, 邓耿. 基于辅因子化学本质及功能的分类与讨论. 大学化学, 2016, 31(4): 39-48.
[14]   Wang Z P, Deng G. Discussion and classification of cofactors based on their chemical essences and functions. University Chemistry, 2016, 31(4): 39-48.
[15]   Zhang Q, Zeng W Z, Xu S, et al. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. Bioresource Technology, 2021, 342: 125978.
doi: 10.1016/j.biortech.2021.125978
[16]   Ku J T, Chen A Y, Lan E I. Metabolic engineering design strategies for increasing acetyl-CoA flux. Metabolites, 2020, 10(4): 166.
doi: 10.3390/metabo10040166
[17]   de Kok A, Hengeveld A F, Martin A, et al. The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1998, 1385(2): 353-366.
doi: 10.1016/S0167-4838(98)00079-X
[18]   Broussard T C, Price A E, Laborde S M, et al. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase. Biochemistry, 2013, 52(19): 3346-3357.
doi: 10.1021/bi4000707 pmid: 23594205
[19]   Chohnan S, Izawa H, Nishihara H, et al. Changes in size of intracellular pools of coenzyme A and its thioesters in Escherichia coli K-12 cells to various carbon sources and stresses. Bioscience, Biotechnology, and Biochemistry, 1998, 62(6): 1122-1128.
pmid: 9692193
[20]   Chohnan S, Furukawa H, Fujio T, et al. Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria. Applied and Environmental Microbiology, 1997, 63(2): 553-560.
doi: 10.1128/aem.63.2.553-560.1997 pmid: 9023936
[21]   Andexer J N, Richter M. Emerging enzymes for ATP regeneration in biocatalytic processes. ChemBioChem, 2015, 16(3): 380-386.
doi: 10.1002/cbic.201402550
[22]   Kiriyama K, Hara K Y, Kondo A. Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter. Applied Microbiology and Biotechnology, 2012, 96(4): 1021-1027.
doi: 10.1007/s00253-012-4075-3 pmid: 22526809
[23]   Xu N, Ye C, Chen X L, et al. Genome-scale metabolic modelling common cofactors metabolism in microorganisms. Journal of Biotechnology, 2017, 251: 1-13.
doi: 10.1016/j.jbiotec.2017.04.004
[24]   陈雅维. ATP调控策略及其在微生物代谢产物合成中的应用. 生物工程学报, 2020, 36(8): 1515-1527.
[24]   Chen Y W. ATP regulation strategy and its application in the synthesis of microbial metabolites. Chinese Journal of Biotechnology, 2020, 36(8): 1515-1527.
[25]   Blank L M, McLaughlin R L, Nielsen L K. Stable production of hyaluronic acid in Streptococcus zooepidemicus chemostats operated at high dilution rate. Biotechnology and Bioengineering, 2005, 90(6): 685-693.
pmid: 15803469
[26]   Candela T, Fouet A. Poly-gamma-glutamate in bacteria. Molecular Microbiology, 2006, 60(5): 1091-1098.
pmid: 16689787
[27]   Liu L M, Li Y, du G C, et al. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. Journal of Applied Microbiology, 2006, 100(5): 1043-1053.
pmid: 16630005
[28]   Aoki R, Wada M, Takesue N, et al. Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum. Bioscience, Biotechnology, and Biochemistry, 2005, 69(8): 1466-1472.
pmid: 16116273
[29]   Chen Y W, Tan T W. Enhanced S-adenosylmethionine production by increasing ATP levels in baker’s yeast (Saccharomyces cerevisiae). Journal of Agricultural and Food Chemistry, 2018, 66(20): 5200-5209.
doi: 10.1021/acs.jafc.8b00819
[30]   Berthoumieux S, de Jong H, Baptist G, et al. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell. Molecular Systems Biology, 2013, 9(1): 634.
doi: 10.1038/msb.2012.70
[31]   Kim S J, Sim H J, Kim J W, et al. Enhanced production of 2, 3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Bioresource Technology, 2017, 245: 1551-1557.
doi: 10.1016/j.biortech.2017.06.034
[32]   Jayakody L N, Horie K, Hayashi N, et al. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2013, 97(14): 6589-6600.
doi: 10.1007/s00253-013-4997-4 pmid: 23744286
[33]   Hao Y N, Ma Q, Liu X Q, et al. High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Metabolic Engineering, 2020, 62: 198-206.
doi: 10.1016/j.ymben.2020.09.007
[34]   Shen Y P, Liao Y L, Lu Q, et al. ATP and NADPH engineering of Escherichia coli to improve the production of 4-hydroxyphenylacetic acid using CRISPRi. Biotechnology for Biofuels, 2021, 14(1): 100.
doi: 10.1186/s13068-021-01954-6
[35]   Zhou S F, Lama S M, Sankaranarayanan M, et al. Metabolic engineering of Pseudomonas denitrificans for the 1, 3-propanediol production from glycerol. Bioresource Technology, 2019, 292: 121933.
doi: 10.1016/j.biortech.2019.121933
[36]   Satowa D, Fujiwara R, Uchio S, et al. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Biotechnology and Bioengineering, 2020, 117(7): 2153-2164.
doi: 10.1002/bit.27350
[37]   Deng C, Lv X Q, Li J H, et al. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metabolic Engineering, 2021, 67: 330-346.
doi: 10.1016/j.ymben.2021.07.012
[38]   Yang F, Liu N, Chen Y Z, et al. Rational engineering of cofactor specificity of glutamate dehydrogenase for poly-γ-glutamic acid synthesis in Bacillus licheniformis. Enzyme and Microbial Technology, 2022, 155: 109979.
doi: 10.1016/j.enzmictec.2021.109979
[39]   Li S B, Xu N, Liu L M, et al. Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Metabolic Engineering, 2014, 22: 32-39.
doi: 10.1016/j.ymben.2013.12.005
[40]   Su H H, Peng F, Ou X Y, et al. Combinatorial synthetic pathway fine-tuning and cofactor regeneration for metabolic engineering of Escherichia coli significantly improve production of D-glucaric acid. New Biotechnology, 2020, 59: 51-58.
doi: 10.1016/j.nbt.2020.03.004
[41]   Su W, Xiao W H, Wang Y, et al. Alleviating redox imbalance enhances 7-dehydrocholesterol production in engineered Saccharomyces cerevisiae. PLoS One, 2015, 10(6): e0130840.
doi: 10.1371/journal.pone.0130840
[42]   Acedos M G, de la Torre I, Santos V E, et al. Modulating redox metabolism to improve isobutanol production in Shimwellia blattae. Biotechnology for Biofuels, 2021, 14(1): 8.
doi: 10.1186/s13068-020-01862-1
[43]   Zhan Y Y, Xu Y, Lu X C, et al. Metabolic engineering of Bacillus licheniformis for sustainable production of isobutanol. ACS Sustainable Chemistry & Engineering, 2021, 9(51): 17254-17265.
[44]   Guo J, Cao Y J, Liu H, et al. Improving the production of isoprene and 1, 3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways. Applied Microbiology and Biotechnology, 2019, 103(6): 2597-2608.
doi: 10.1007/s00253-018-09578-x
[45]   Li T G, Yan Y, He J Z. Enhanced direct fermentation of cassava to butanol by Clostridium species strain BOH3 in cofactor-mediated medium. Biotechnology for Biofuels, 2015, 8: 166.
doi: 10.1186/s13068-015-0351-7
[46]   Fu J, Huo G X, Feng L L, et al. Metabolic engineering of Bacillus subtilis for chiral pure meso-2, 3-butanediol production. Biotechnology for Biofuels, 2016, 9: 90.
doi: 10.1186/s13068-016-0502-5
[47]   Wu W J, Zhang Y, Liu D H, et al. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum. Metabolic Engineering, 2019, 52: 77-86.
doi: 10.1016/j.ymben.2018.11.006
[48]   Wang P C, Yang X W, Lin B X, et al. Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metabolic Engineering, 2017, 44: 143-149.
doi: 10.1016/j.ymben.2017.09.013
[49]   Wang Z K, Gao C J, Wang Q, et al. Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering. Biochemical Engineering Journal, 2012, 67: 126-131.
doi: 10.1016/j.bej.2012.06.006
[50]   Sung C, Jung E, Choi K Y, et al. The production of ω-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99(16): 6667-6676.
doi: 10.1007/s00253-015-6630-1
[51]   Jin C C, Zhang J L, Song H, et al. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microbial Cell Factories, 2019, 18(1): 77.
[52]   Wang J P, Ledesma-Amaro R, Wei Y J, et al. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica:a Review. Bioresource Technology, 2020, 313: 123707.
doi: 10.1016/j.biortech.2020.123707
[53]   樊婧婧, 赵雨佳, 王晨, 等. 酿酒酵母乙酰辅酶A精细调控合成萜类化合物研究进展. 化工进展, 2018, 37(7): 2773-2779.
[53]   Fan J J, Zhao Y J, Wang C, et al. Fine-regulation of Saccharomyces cerevisiae acetyl-CoA to synthetize terpenoids. Chemical Industry and Engineering Progress, 2018, 37(7): 2773-2779.
[54]   Takahashi H, McCaffery J M, Irizarry R A, et al. Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription. Molecular Cell, 2006, 23(2): 207-217.
pmid: 16857587
[55]   Starai V J, Escalante-Semerena J C. Acetyl-coenzyme A synthetase(AMP forming). Cellular and Molecular Life Sciences: CMLS, 2004, 61(16): 2020-2030.
[56]   李然, 闫晓光, 李伟国, 等. 高效合成倍半萜酿酒酵母的构建策略. 中国生物工程杂志, 2022, 42(1-2): 14-25.
[56]   Li R, Yan X G, Li W G, et al. Strategies of engineering Saccharomyces cerevisiae for high-efficiency synthesis of sesquiterpenes. China Biotechnology, 2022, 42(1-2): 14-25.
[57]   Yee D A, DeNicola A B, Billingsley J M, et al. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 55: 76-84.
doi: 10.1016/j.ymben.2019.06.004
[58]   Zhang C B, Li M, Zhao G R, et al. Harnessing yeast peroxisomes and cytosol acetyl-CoA for sesquiterpene α-humulene production. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1382-1389.
doi: 10.1021/acs.jafc.9b07290
[59]   Liu H, Fan J J, Wang C, et al. Enhanced β-amyrin synthesis in Saccharomyces cerevisiae by coupling an optimal acetyl-CoA supply pathway. Journal of Agricultural and Food Chemistry, 2019, 67(13): 3723-3732.
doi: 10.1021/acs.jafc.9b00653 pmid: 30808164
[60]   Krivoruchko A, Serrano-Amatriain C, Chen Y, et al. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. Journal of Industrial Microbiology and Biotechnology, 2013, 40(9): 1051-1056.
doi: 10.1007/s10295-013-1296-0 pmid: 23760499
[61]   Schadeweg V, Boles E. Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. Biotechnology for Biofuels, 2016, 9: 257.
pmid: 27924150
[62]   陈露, 刘丁玉, 汪保卫, 等. 大肠杆菌乙酰辅酶A代谢调控及其应用研究进展. 化工进展, 2019, 38(9): 4218-4226.
[62]   Chen L, Liu D Y, Wang B W, et al. Advances in acetyl coenzyme A metabolic engineering with Escherichia coli. Chemical Industry and Engineering Progress, 2019, 38(9): 4218-4226.
[63]   Lin H, Castro N M, Bennett G N, et al. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Applied Microbiology and Biotechnology, 2006, 71(6): 870-874.
doi: 10.1007/s00253-005-0230-4
[64]   Zha W J, Rubin-Pitel S B, Shao Z Y, et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metabolic Engineering, 2009, 11(3): 192-198.
doi: 10.1016/j.ymben.2009.01.005
[65]   Miyake M, Miyamoto C, Schnackenberg J, et al. Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate. Applied Biochemistry and Biotechnology, 2000, 84-86: 1039-1044.
[66]   Abdel-Hamid A M, Attwood M M, Guest J R. Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology (Reading, England), 2001, 147(Pt 6): 1483-1498.
doi: 10.1099/00221287-147-6-1483
[67]   闫伟欢, 黄统, 洪解放, 等. 丁醇在大肠杆菌中的生物合成研究进展. 中国生物工程杂志, 2020, 40(9): 69-76.
[67]   Yan W H, Huang T, Hong J F, et al. Recent advances in butanol biosynthesis of Escherichia coli. China Biotechnology, 2020, 40(9): 69-76.
[68]   Lee S H, Kang K H, Kim E Y, et al. Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis. Biotechnology Letters, 2013, 35(10): 1631-1637.
doi: 10.1007/s10529-013-1246-y
[69]   Xu P, Ranganathan S, Fowler Z L, et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metabolic Engineering, 2011, 13(5): 578-587.
doi: 10.1016/j.ymben.2011.06.008
[70]   Liu B, Xiang S M, Zhao G, et al. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metabolic Engineering, 2019, 51: 121-130.
doi: S1096-7176(18)30329-X pmid: 30343047
[71]   Feng X Y, Lian J Z, Zhao H M. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metabolic Engineering, 2015, 27: 10-19.
doi: 10.1016/j.ymben.2014.10.001
[72]   Schadeweg V, Boles E. N-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnology for Biofuels, 2016, 9: 44.
doi: 10.1186/s13068-016-0456-7 pmid: 26913077
[73]   Ghosh A, Ando D, Gin J, et al. 13 C metabolic flux analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids. Frontiers in Bioengineering and Biotechnology, 2016, 4: 76.
pmid: 27761435
[74]   Cardenas J, da Silva N A. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metabolic Engineering, 2016, 36: 80-89.
doi: S1096-7176(16)00030-6 pmid: 26969250
[75]   Zhang Q, Yu S Q, Lyu Y B, et al. Systematically engineered fatty acid catabolite pathway for the production of (2S)-naringenin in Saccharomyces cerevisiae. ACS Synthetic Biology, 2021, 10(5): 1166-1175.
doi: 10.1021/acssynbio.1c00002 pmid: 33877810
[76]   Lee E G, Yoon S H, Das A, et al. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli. Biotechnology and Bioengineering, 2009, 102(1): 200-208.
doi: 10.1002/bit.22040
[77]   Hara K Y, Kondo A. ATP regulation in bioproduction. Microbial Cell Factories, 2015, 14: 198.
doi: 10.1186/s12934-015-0390-6
[78]   Zhou J W, Liu L M, Shi Z P, et al. ATP in current biotechnology: Regulation, applications and perspectives. Biotechnology Advances, 2009, 27(1): 94-101.
doi: 10.1016/j.biotechadv.2008.10.005
[79]   Wang D H, Li D C, Zhang G C, et al. Disruption of por1 gene in Candida utilis improves co-production of S-adenosylmethionine and glutathione. Journal of Biotechnology, 2019, 290: 16-23.
doi: 10.1016/j.jbiotec.2018.12.005
[80]   Yoon S H, Do J H, Lee S Y, et al. Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnology Letters. 2000, 22(7): 585-588.
doi: 10.1023/A:1005625026623
[81]   Zhang X X, Liu S K, Takano T. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechnology Letters, 2008, 30(7): 1289-1294.
doi: 10.1007/s10529-008-9685-6
[82]   Singh A, Cher Soh K, Hatzimanikatis V, et al. Manipulating redox and ATP balancing for improved production of succinate in E. coli. Metabolic Engineering, 2011, 13(1): 76-81.
doi: 10.1016/j.ymben.2010.10.006
[83]   Aa V, Ph M. Electron transport chain: role in reactive oxygen species production and aging. Scholars Journal of Agriculture and Veterinary Sciences. 2016, 3(5): 378-388.
[84]   Yamanaka K, Kito N, Imokawa Y, et al. Mechanism of Epsilon-poly-L-lysine production and accumulation revealed by identification and analysis of an Epsilon-poly-L-lysine-degrading enzyme. Applied and Environmental Microbiology, 2010, 76(17): 5669-5675.
doi: 10.1128/AEM.00853-10 pmid: 20601519
[85]   Li M H, Meng X M, Diao E J, et al. Productivity enhancement of S-adenosylmethionine in Saccharomyces cerevisiae using n-hexadecane as oxygen vector. Journal of Chemical Technology & Biotechnology, 2012, 87(10): 1379-1384.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[4] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[5] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[6] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[7] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[8] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[9] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[10] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[11] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[12] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.
[13] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[14] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.
[15] WANG Yong-cheng, CHEN Tao, SHI Ting, WANG Zhi-wen, ZHAO Xue-ming. Progress in Biosynthesis of Purine Nucleosides and Their Derivatives by Metabolic Engineering[J]. China Biotechnology, 2015, 35(5): 87-95.