Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (7): 45-53    DOI: 10.13523/j.cb.2203034
    
Screening of Several Strains of Brewer’s Yeast Strains and Comparison of Their Fermentability
Chun-lei CAO1,2,Pei-bin YU1,2,**(),Dian-hui WU1,2,Guo-lin CAI1,2
1. National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing (Jiangnan University),Wuxi 214122,China
2. School of Biotechnology, Jiangnan University,Wuxi 214122,China
Download: HTML   PDF(1250KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Brewer’s yeast is the key to beer brewing and can directly influence the beer quality. In the beer brewing process, brewer’s yeast is passed down from generation to generation and preserved several times, causing problems such as the decline of fermentation performance of good strains, resulting in incomplete fermentation and affecting the flavor quality of the final beer. Therefore, this study took 8 lager-type brewer’s yeast strains were selected as the starting strains in this study, and 80 isolated strains were obtained through plate isolation and purification, and finally 8 brewer’s yeast strains with excellent fermentation performance were gained through preliminary sieving and rescreening in triangular flask fermentation and pilot fermentation experiments in fermenter. Among them, 6 yeast strains can be used to brew beer with diacetyl content lower than 0.1 mg/L; 3 yeast strains with fermentation degree higher than 70% are suitable for brewing dry beer; 1 yeast strain with fermentation degree lower than 50% is suitable for brewing low alcohol beer. In terms of flavor: 1 yeast strain was used to brew beer with an alcohol to ester ratio of 3.3, with a more prominent beer ester aroma; another yeast strain was used to brew beer with an alcohol to ester ratio of 4.5, with a higher alcohol content in beer. The fermentation characteristics of 8 yeast strains having been purified and bred are obvious,which are especially easy for practical application in craft breweries.



Key wordsBeer      Yeast      Screening      Fermentability     
Received: 16 March 2022      Published: 03 August 2022
ZTFLH:  Q819  
Corresponding Authors: Pei-bin YU     E-mail: yupeibin@jiangnan.edu.cn
Cite this article:

Chun-lei CAO,Pei-bin YU,Dian-hui WU,Guo-lin CAI. Screening of Several Strains of Brewer’s Yeast Strains and Comparison of Their Fermentability. China Biotechnology, 2022, 42(7): 45-53.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2203034     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I7/45

菌株 外观发酵度/%
原始株 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
BY1
60.01±
3.07
69.74±
5.22
72.62±
2.73
71.31±
4.63
70.08±
3.89
60.31±
4.12
70.22±
6.11
69.05±
3.98
79.47±
3.13
65.69±
3.25
66.14±
2.96
BY2
61.23±±
1.78
69.35±
2.02
66.37±
3.29
72.74±
1.97
65.45±
2.89
70.81±
3.11
68.21±
3.38
70.05±
2.67
67.97±
1.23
62.46±
1.28
71.36±
3.01
BY3
59.34±
1.62
63.85±
4.18
64.65±
3.89
66.83±
4.22
64.19±
5.11
68.32±
4.09
64.54±
3.97
68.44±
3.65
67.75±
3.09
65.80±
4.89
68.42±
2.76
BY4
58.89±
1.09
68.32±
1.36
70.22±
0.89
55.01±
1.29
63.16±
2.02
69.24±
2.68
70.51±
1.44
62.47±
2.06
56.32±
0.93
62.36±
1.04
79.05±
2.17
BY5
57.61±
3.02
64.23±
2.78
59.96±
3.03
70.85±
3.25
72.08±
1.98
62.36±
4.01
58.36±
2.37
58.48±
3.02
61.45±
2.36
62.94±
3.49
63.36±
2.09
BY6
60.87±
1.94
79.51±
1.97
77.08±
2.79
85.77±
3.01
78.74±
1.69
74.42±
2.43
77.84±
2.58
71.77±
0.94
71.19±
2.64
79.74±
1.39
76.53±
2.08
BY7
63.48±
3.39
79.97±
2.59
83.34±
3.68
79.27±
3.09
82.17±
1.59
73.55±
2.72
76.85±
3.21
84.26±
1.38
82.29±
2.49
79.97±
1.99
79.51±
2.06
BY8
62.68±
2.64
73.04±
1.86
78.12±
2.13
79.97±
3.41
81.35±
1.69
77.89±
2.03
78.94±
2.01
74.07±
2.89
77.65±
1.28
81.11±
0.79
79.63±
1.83
Table 1 Appearance degree of fermentation during fermentation in conical flask of isolated yeast strain
菌株 双乙酰含量/(mg/L)
原始株 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
BY1
0.21±
0.03
0.06±
0.01
0.09±
0.01
0.11±
0.02
0.19±
0.01
0.17±
0.01
0.19±
0.01
0.16±
0.02
0.04±
0.01
0.09±
0.01
0.25±
0.01
BY2
0.32±
0.02
0.32±
0.02
0.13±
0.01
0.08±
0.02
0.22±
0.03
0.09±
0.03
0.63±
0.03
0.06±
0.01
0.05±
0.01
0.62±
0.01
0.17±
0.01
BY3
0.16±
0.01
0.11±
0.02
0.05±
0.01
0.07±
0.01
0.08±
0.01
0.04±
0.01
0.04±
0.01
0.05±
0.02
0.04±
0.01
0.06±
0.01
0.05±
0.01
BY4
0.17±
0.02
0.12±
0.03
0.08±
0.01
0.13±
0.02
0.15±
0.02
0.02±
0.01
0.11±
0.01
0.21±
0.02
0.12±
0.02
0.14±
0.03
0.13±
0.03
BY5
0.19±
0.03
0.06±
0.02
0.09±
0.01
0.10±
0.01
0.07±
0.01
0.11±
0.02
0.12±
0.01
0.11±
0.01
0.08±
0.01
0.09±
0.01
0.08±
0.01
BY6
0.56±
0.03
0.51±
0.02
0.37±
0.02
0.47±
0.03
0.51±
0.03
0.38±
0.02
0.46±
0.02
0.39±
0.03
0.27±
0.02
0.49±
0.03
0.27±
0.02
BY7
0.35±
0.02
0.36±
0.01
0.29±
0.02
0.17±
0.01
0.24±
0.02
0.32±
0.02
0.19±
0.02
0.14±
0.01
0.09±
0.01
0.17±
0.02
0.18±
0.01
BY8
0.47±
0.03
0.49±
0.03
0.35±
0.03
0.26±
0.03
0.23±
0.02
0.37±
0.01
0.36±
0.01
0.33±
0.02
0.31±
0.01
0.18±
0.01
0.14±
0.01
Table 2 Diacetyl content in fermentation broth of isolated yeast strains
酵母菌株 双乙酰含量/(mg/L) 外观发酵度/%
0代 1代 2代 0代 1代 2代
BY1-2 0.06±0.01 0.14±0.02 0.20±0.02 69.58±2.78 68.09±3.12 81.71±4.32
BY1-3 0.17±0.02 0.16±0.01 0.12±0.01 60.42±1.98 64.08±2.67 80.66±2.19
BY1-8 0.04±0.01 0.15±0.03 0.15±0.03 69.47±2.12 81.35±3.81 77.43±1.79
BY2-3 0.09±0.01 0.13±0.02 0.23±0.01 70.05±1.69 80.66±2.14 79.97±3.08
BY2-5 0.05±0.01 0.16±0.02 0.30±0.02 67.97±2.72 79.97±2.06 77.43±1.28
BY2-10 0.22±0.03 0.20±0.03 0.43±0.03 62.25±1.89 79.85±3.52 76.27±2.91
BY3-5 0.06±0.01 0.19±0.03 0.27±0.02 64.76±3.04 66.6±1.67 64.31±2.16
BY3-7 0.05±0.01 0.28±0.03 0.23±0.02 67.75±2.06 67.28±1.89 68.9±2.37
BY3-8 0.05±0.01 0.19±0.02 0.20±0.03 64.31±2.15 70.05±2.49 67.52±1.93
BY4-2 0.12±0.02 0.11±0.01 0.21±0.02 56.32±1.76 76.27±1.49 77.2±2.07
BY4-6 0.13±0.03 0.29±0.02 0.25±0.03 57.05±2.04 80.32±3.01 71.65±3.18
BY4-10 0.15±0.02 0.25±0.03 0.24±0.01 63.16±1.79 83.57±1.81 82.06±2.59
BY5-1 0.05±0.01 0.27±0.02 0.28±0.03 58.36±2.05 74.19±1.63 64.31±1.98
BY5-3 0.05±0.01 0.16±0.02 0.17±0.02 61.34±1.78 78.58±2.17 75.81±2.06
BY5-4 0.04±0.01 0.15±0.03 0.14±0.03 63.62±2.33 79.05±3.17 73.73±2.46
BY6-1 0.36±0.03 0.12±0.02 0.12±0.02 76.96±2.18 50.41±2.09 48.6±1.39
BY6-3 0.27±0.02 0.14±0.01 0.13±0.01 71.19±2.11 53.58±2.02 54.49±3.16
BY6-9 0.27±0.02 0.11±0.02 0.10±0.01 74.42±1.79 57.01±2.33 55.41±3.17
BY7-2 0.17±0.02 0.08±0.01 0.10±0.01 79.27±2.65 79.97±3.02 82.17±2.89
BY7-7 0.13±0.03 0.10±0.01 0.09±0.01 84.38±2.18 79.74±2.66 69.13±1.89
BY7-8 0.08±0.01 0.11±0.02 0.13±0.03 82.29±3.01 82.75±2.78 80.66±2.37
BY8-3 0.23±0.02 0.34±0.02 0.37±0.03 81.35±2.55 57.91±1.78 79.74±1.81
BY8-4 0.31±0.02 0.46±0.03 0.52±0.04 77.65±2.19 79.27±2.65 78.58±2.38
BY8-9 0.14±0.01 0.24±0.02 0.17±0.01 79.51±2.61 78.82±1.38 79.27±2.07
Table 3 Diacetyl content and apparent fermentation degree in fermentation broth of yeast strains of different generations
Fig.1 Yeast strain cell number during main fermentation
Fig.2 The apparent concentration of the fermentation broth during the main fermentation process
检测指标 BY1-3 BY2-3 BY3-8 BY4-2 BY5-4 BY6-9 BY7-2 BY8-9
双乙酰含量/(mg/L) 0.10±0.01 0.03±0.01 0.09±0.01 0.11±0.02 0.08±0.01 0.02±0.01 0.01±0.01 0.02±0.01
酒精度/% 3.68±0.23 4.54±0.19 3.52±0.41 4.56±0.13 3.64±0.21 3.98±0.16 5.06±0.26 4.62±0.18
实际发酵度/% 55.32±2.08 72.69±3.27 45.9±1.89 72.46±3.16 64.73±3.32 61.42±2.69 72.02±1.92 69.48±2.84
Table 4 Detection of various indicators after beer post-fermentation
风味物质/(mg/L) BY1-3 BY2-3 BY3-8 BY4-2 BY5-4 BY6-9 BY7-2 BY8-9
正丙醇 16.61±1.23 9.82±1.72 16.81±2.01 10.96±0.98 12.55±1.39 13.17±1.22 8.32±2.03 6.47±0.78
异丁醇 17.2±1.61 19.6±2.62 18.8±2.19 21.2±2.69 17.3±1.78 24.1±0.94 21.7±2.19 23.4±3.01
异戊醇 52.2±3.51 53.4±2.13 67.2±1.29 61.3±1.79 41.8±2.04 53.9±2.01 55.8±1.89 30.3±2.81
己酸乙酯 0.15±0.02 0.21±0.03 0.16±0.02 0.18±0.01 0.24±0.03 0.14±0.01 0.29±0.02 0.31±0.02
乙酸乙酯 24.6±1.78 16.7±1.61 26.8±1.91 23.6±2.08 15.3±0.79 23.7±1.09 25.1±2.46 17.1±1.39
乙酸异戊酯 1.4±0.03 2.3±0.25 3.1±0.18 3.2±0.19 1.3±0.09 2.6±0.12 1.5±0.11 1.1±0.03
醇酯比 3.3 4.4 3.5 3.6 4.5 3.7 3.5 3.7
Table 5 Determination of main flavor substances after beer post-fermentation
Fig.3 The radar analysis of the sensory evaluation of beer
[1]   王金晶, 杨静静, 丁华建, 等. 啤酒发酵过程中酵母环境压力应答机制研究进展. 食品与发酵工业, 2017, 43(1): 266-270, 275.
[1]   Wang J J, Yang J J, Ding H J, et al. Research progress in yeast global stress response during beer brewing. Food and Fermentation Industries, 2017, 43(1): 266-270, 275.
[2]   宋玉梅, 谢鑫, 赵楠, 等. 啤酒酿造过程中酵母胞内有机锌与风味代谢物质的相关性. 食品与发酵工业, 2019, 45(23): 79-83.
[2]   Song Y M, Xie X, Zhao N, et al. The correlation between the intracellular organic zinc in yeast and the flavor metabolites during the beer brewing process. Food and Fermentation Industries, 2019, 45(23): 79-83.
[3]   Callejo M J, García Navas J J, Alba R, et al. Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. European Food Research and Technology, 2019, 245(6): 1229-1238.
doi: 10.1007/s00217-019-03244-w
[4]   孙可澄, 尹花, 赵鑫锐, 等. 多轮ARTP诱变快速筛选低产乙醛工业啤酒酵母. 食品与发酵工业, 2021, 47(15): 56-62.
[4]   Sun K C, Yin H, Zhao X R, et al. Rapid screening of industrial brewer’s yeast with low acetaldehyde yield by multi-round ARTP mutagenesis. Food and Fermentation Industries, 2021, 47(15): 56-62.
[5]   侯红霞, 刘霞, 葛峻伶, 等. 四种艾尔啤酒酵母菌株的分离保藏. 中外酒业·啤酒科技, 2019(23): 49-52.
[5]   Hou H X, Liu X, Ge J L, et al. Isolation and preservation of four strains of ale brewer’s yeast. Global Alcinfo, 2019(23): 49-52.
[6]   周雪飞, 索婧怡, 侯丹, 等. RIM21基因缺失对拉格啤酒酵母絮凝性能的影响. 生物工程学报, 2021, 37(12): 4373-4381.
[6]   Zhou X F, Suo J Y, Hou D, et al. Effect of RIM21 gene disruption on flocculation of lager yeast. Chinese Journal of Biotechnology, 2021, 37(12): 4373-4381.
[7]   吴霞, 李蓉. 浅析啤酒的种类. 现代食品, 2017(17): 76-78.
[7]   Wu X, Li R. Analysis of the types of beer. Modern Food, 2017(17): 76-78.
[8]   黄琳, 许忠平, 闫菲, 等. 蜂蜜艾尔精酿啤酒酿造工艺研究. 中国酿造, 2019, 38(3): 134-138.
[8]   Huang L, Xu Z P, Yan F, et al. Brewing process of honey ale craft beer. China Brewing, 2019, 38(3): 134-138.
[9]   易豪武, 李俊欣, 易联成. 精酿啤酒生产控制系统的分析与设计. 轻工科技, 2021, 37(4): 28-30.
[9]   Yi H W, Li J X, Yi L C. Analysis and design of craft beer production control system. Light Industry Science and Technology, 2021, 37(4): 28-30.
[10]   杨贤哲, 韩小雨, 覃秋杏, 等. 精酿啤酒的消费者偏好分析. 中国酿造, 2021, 40(2): 210-215.
[10]   Yang X Z, Han X Y, Qin Q X, et al. Consumer preference analysis of craft beer. China Brewing, 2021, 40(2): 210-215.
[11]   王蕾, 薛一鸣, 王杰, 等. 中国精酿啤酒现状及发展. 现代食品, 2020(14): 18-20.
[11]   Wang L, Xue Y M, Wang J, et al. The status and development of China craft beer. Modern Food, 2020(14): 18-20.
[12]   丁华建, 段鸿绪, 王金晶, 等. 两株lager啤酒酵母在传代及自溶过程中生理性能差异的比较. 食品与发酵工业, 2018, 44(10): 57-64.
[12]   Ding H J, Duan H X, Wang J J, et al. Comparison of physiological performance differences between two lager yeasts during serial re-pitching and autolysis. Food and Fermentation Industries, 2018, 44(10): 57-64.
[13]   熊丹. 啤酒生产用酵母菌株保藏方法探讨. 中外酒业·啤酒科技, 2019(11): 13-18.
[13]   Xiong D. Discussion on the preservation method of yeast strain for beer production. Global Alcinfo, 2019(11): 13-18.
[14]   胡雪莲.啤酒酵母的使用和管理. 大连: 大连工业大学, 2017.
[14]   Hu X L.The use and management of beer yeast. Dalian: Dalian Polytechnic University, 2017.
[15]   王伟, 俞志敏, 侯英敏, 等. 产香酵母Pichia myanmarensis LX15的分离纯化及对精酿啤酒风味物质形成的影响. 微生物学杂志, 2018, 38(4): 34-40.
[15]   Wang W, Yu Z M, Hou Y M, et al. Isolation and properties of aroma-producing Pichia myanmarensis and the effects of the formation of aromatic substances in craft-brewed beer. Journal of Microbiology, 2018, 38(4): 34-40.
[16]   邱秀文, 吴晓玉, 郭晓燕, 等. 啤酒酵母菌种改良方法. 食品研究与开发, 2012, 33(7): 169-173.
[16]   Qiu X W, Wu X Y, Guo X Y, et al. Strain improvement method of brewer’s yeast. Food Research and Development, 2012, 33(7): 169-173.
[16]   邱秀文, 吴晓玉, 郭晓燕, 等. 啤酒酵母菌种改良方法. 食品研究与开发, 2012, 33(7): 169-173.
[16]   Qiu X W, Wu X Y, Guo X Y, et al. The methods of improving beer yeast performance. Food Research and Development, 2012, 33(7): 169-173
[17]   诸葛健王正祥. 工业微生物实验技术手册. 北京: 中国轻工业出版社, 1994: 50-87.
[17]   Zhu G J, Wang Z X. Industrial microbiology experiment technology in the book. Beijing: China Light Industry Press, 1994: 50-87.
[18]   李崎. 选育抗老化啤酒酵母提高啤酒风味稳定性的研究. 无锡: 江南大学, 1997.
[18]   Li Q. Improvement of beer flavor stability by screening anti-staling brewer’s yeast. Wuxi: Jiangnan University, 1997.
[19]   张媛媛, 魏良鑫, 佟婷婷, 等. 顶空进样气相色谱法检测啤酒中乙醛. 分析试验室, 2011, 30(9): 26-29.
[19]   Zhang Y Y, Wei L X, Tong T T, et al. Determination of acetaldehyde in beer by headspace gas chromatography. Chinese Journal of Analysis Laboratory, 2011, 30(9): 26-29.
[20]   曾婷, 刘月英, 全丽, 等. 低产双乙酰的啤酒酵母菌株ZT21-9-2的筛选及其ILV2基因的分析. 厦门大学学报(自然科学版), 2008, 47(5): 718-722.
[20]   Zeng T, Liu Y Y, Quan L, et al. The selection of low diacetyl brewer’s yeast strain ZT21-9-2 and its ILV2 gene analysis. Journal of Xiamen University (Natural Science), 2008, 47(5): 718-722.
[21]   Verbelen P J, Dekoninck T M L, van Mulders S E, et al. Stability of high cell density brewery fermentations during serial repitching. Biotechnology Letters, 2009, 31(11): 1729-1737.
doi: 10.1007/s10529-009-0067-5 pmid: 19565190
[22]   冯鹏鹏, 孙丽静, 肖冬光, 等. 啤酒酵母高级醇的代谢与调控研究进展. 食品研究与开发, 2021, 42(8): 153-159.
[22]   Feng P P, Sun L J, Xiao D G, et al. Research progress on metabolism and regulation of higher alcohols in beer yeast. Food Research and Development, 2021, 42(8): 153-159.
[23]   官钰, 刘春凤, 李崎, 等. 低乙醛啤酒酵母风味优势菌株的选育. 安徽农业大学学报, 2021, 48(3): 511-517.
[23]   Guan Y, Liu C F, Li Q, et al. Screening of low-acetaldehyde beer yeast with flavor advantages. Journal of Anhui Agricultural University, 2021, 48(3): 511-517.
[24]   韩龙. 控制啤酒醇酯比的意义与措施. 中外酒业·啤酒科技, 2019(15): 50-53.
[24]   Han L. Significance and measures of controlling alcohol-ester ratio of beer. Global Alcinfo, 2019(15): 50-53.
[25]   孟艳丽, 李文华, 李永娟, 等. 啤酒醇酯比分析综述. 啤酒科技, 2014(1): 12-13, 11.
[25]   Meng Y L, Li W H, Li Y J, et al. A review of beer alcohol-ester ratio analysis. Beer Tech, 2014(1): 12-13, 11.
[1] YANG Huan-lian,QIU Fei,WANG Guo-quan,DIAO Yong. Progress in the Research and Application of Tumor Organoids in Drug Screening and Personalized Drug Treatment[J]. China Biotechnology, 2022, 42(6): 47-53.
[2] LIU Ming-zhu,ZHANG Liang,GUO Fang,LI Chun,FENG Xu-dong. Construction of Yeast Surface Display System and Application in Cellulose Degrading[J]. China Biotechnology, 2022, 42(5): 91-99.
[3] CHEN Yang, LIU Tong, ZHANG Jia-qi, LIAO Hua-xin, LIN Yue-zhi, WANG Xiao-jun, WANG Ya-yu. Screening of Monoclonal Antibodies Targeting the Equine IgG1 Based on Single B Cell Antibodies Gene Amplification Technology[J]. China Biotechnology, 2022, 42(4): 17-23.
[4] FENG Xiao-ying,MENG Qian,CHEN Wei,YU Lei,HUANG Wei-ren. Application Progress of Organoids-on-a-chip in Medical Research[J]. China Biotechnology, 2022, 42(1/2): 112-118.
[5] ZHANG Yao,QIU Xiao-man,SUN Hao,GUO Lei,HONG Hou-sheng. The Industrial Applications of Saccharomyces cerevisiae[J]. China Biotechnology, 2022, 42(1/2): 26-36.
[6] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[7] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[8] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[9] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[10] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[11] ZHANG Hu,LIU Zhen-zhou,CHEN Jia-min,GAO Bao-yan,ZHANG Cheng-wu. Research Progress on the Production of Bioactive Compounds from Marine Diatoms[J]. China Biotechnology, 2021, 41(4): 81-90.
[12] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[13] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[14] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[15] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.