Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 38-44    DOI: 10.13523/j.cb.2010005
    
Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model
LI Bo1,2,WANG Ze-jian3,**(),LIANG Jian-guang4,**(),LIU Ai-jun5,LI Hai-dong5
1 School of Biological and Food Engineering,Changshu Institute of Technology,Changshu 215500, China
2 College of Pharmaceutical Science,Soochow University,Suzhou 215123, China
3 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
4 College of Pharmaceutical and Life Sciences, Changzhou University,Changzhou 213164, China
5 Hebei Xingang Pharmaceutical Co., Ltd,Hebei 051530,China
Download: HTML   PDF(9983KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Rifamycin SV has low toxicity, high curative effect, and broad antibacterial spectrum. It is mainly produced through the aerobic fermentation by Amycobacterium marinum, and oxygen supply limitation was always the critical factor that affects the rifamycin SV biosynthesis. In order to reduce the influence of oxygen limitation in the fermentation process and further increase the fermentation yield of rifamycin, an oxygen limitation directional model was established with anhydrous sodium sulfite, combining normal temperature and atmospheric pressure plasma mutagenesis(ARTP); a high-throughput screening method of rapid culture of the vinegar-producing strains in 24-well plates was proposed; the high-yielding rifamycin SV strain NSMXG-M126 that can tolerate hypoxia has been efficiently selected. The changes in the parameters of the fermentation metabolic state show that the high-yielding strain has better oxygen affinity. Under the same oxygen supply conditions, it showed a faster bacterial growth rate and rapid synthesis of rifamycin SV compared with the control. In the case of low oxygen supply, the fermentation unit reached 7 839mg/mL, which was 48% higher than the original strain. The results demonstrated that the mutant strains that tolerate hypoxia have higher production efficiency of rifamycin SV.



Key wordsRifamycin SV      Amycobacterium marinum      High-throughput screening      Atmospheric and room temperature plasma (ARTP)      Oxygen-limited model     
Received: 05 November 2020      Published: 08 April 2021
ZTFLH:  Q815  
Corresponding Authors: Ze-jian WANG,Jian-guang LIANG     E-mail: wzjvictory@163.com;liang4523@126.com
Cite this article:

LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model. China Biotechnology, 2021, 41(2/3): 38-44.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2010005     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/38

装液量(mL) 1 1.5 2 2.5 3 摇瓶
PMV 28.2±1.3 26.6±1.1 25.2±1.2 23.0±0.9 18.1±1.1 26.4±1.4
单位(mg/L) 4 920±46 5 265±32 5 408±38 4 739±41 2 953±39 5 620±47
比产量(mg/PMV) 174.5±13 197.9±18 214.6±19 206.4±16 163.1±21 212.9±18
Table 1 Fermentation conditions of initial strains under different conditions of liquid volume in well plates and comparison with shake flask fermentation
Fig.1 Lethality curve Amycobacterium marinum treated by ARTP
无水亚硫酸钠(g/L) 0 0.1 0.2 0.4 0.6 1.0 2.0
CFU 230±15 205±21 190±17 45±4 4±2 0 0
Table 2 Effects of different concentrations of sodium sulfite on colony forming units(CFU)
处理时间(s) 正突变率(%) 负突变率(%)
0 3.8±0.7 4.5±1.0
5 7.5±1.2 13.2±1.4
氧限制筛选模型 15 13.0±1.6 23.8±1.9
25 21.3±2.0 28.5±1.8
35 8.4±1.1 42.0±2.1
正常培养平皿 25 9.1±1.5 22.7±2.2
Table 3 The effect of different treatment time on the positive mutation rate under the condition of oxygen limitation model
菌浓
(PMV)
单位
(mg/mL)
比产量
(mg/PMV)
传代1 26.2 6 208.4 237.0
传代2 26.3 6 217.1 236.4
传代3 25.9 6 148.0 237.4
传代4 26.2 6 265.4 239.1
传代5 26.7 6 196.1 232.1
传代6 26.3 6 246.9 237.5
均值 26.3 6 213.7 236.6
Table 4 Verification of strain genetic stability
菌株 出发菌株 NSMXG-M126
转速(r/min) 380 380
流量(vvm) 0.6 0.6
OUR[mmol/(L·h)] 10 12
PMV(%) 25 32
效价(mg/mL) 5 659 7 839
比产率(mg/PMV) 188.6 244.9
Table 5 Comparison of fermentation of starting strain and NSMXG-M126 under different oxygen supply conditions in a 50L fermentor
Fig.2 Comparison of fermentation process between starting strain and NSMXG-M126 under low oxygen supply in 50L fermentor
[1]   Wrona I E, Agouridas V, Panek J S. Design and synthesis of ansamycin antibiotics. Comptes Rendus Chimie, 2008,11(11- 12):1483-1522.
[2]   孟根水. 利福霉素B产生菌的推理选育及发酵工艺优化. 杭州:浙江工业大学, 2002.
[2]   Meng G S. Improvement of rifamycin B producting strain amycolatoposis mediterranei by rational screening and optimalization of its fermentative technology. Hangzhou: Zhejiang University of Technology, 2002.
[3]   Priscila G, Fernández F J, Absalón A E, et al. Expression of the bacterial hemoglobin gene from Vitreoscilla stercoraria increases rifamycin B production in Amycolatopsis mediterranei. Journal of Bioscience and Bioengineering, 2008,106(5):493-497.
doi: 10.1263/jbb.106.493 pmid: 19111646
[4]   Bapat P M, Wangikar P P. Optimization of rifamycin B fermentation in shake flasks via a machine-learning-based approach. Biotechnology and Bioengineering, 2004,86(2):201-208.
[5]   Bapat P M, Das D, Sohoni S V, et al. Hierarchical amino acid utilization and its influence on fermentation dynamics: rifamycin B fermentation using Amycolatopsis mediteraneiS699, a case study. Microbial Cell Factories, 2006,5(1):1-14.
[6]   Bapat P M, Das D, Dave N N, et al. Phaseshifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online. Journal of Biotechnology, 2006,127(1):115-128.
[7]   孟根水, 孙新强, 金一平, 等. 利福霉素B发酵工艺研究. 中国抗生素杂志, 2003,28(3):137-140.
[7]   Meng G S, Sun X Q, Jin Y P, et al. Study on the fermentation process technology of rifamycin B. Chinese Journal of Antibiotics, 2003,28(3):137-140.
[8]   Bapat P M, Bhartiya S, Venkatesh K V, et al. Structured kinetic model to represent the utilization of multiple substrates in complex media during rifamycin B fermentation. Biotechnology and Bioenginerring, 2006,93(4):779-790.
[9]   Mohammad F H. Scaling up for the industrial production of rifamycin B fed-batch production mode in shake flasks and bench-scale fermentor. Fermentation Technology, 2012,1(5):108-114.
[10]   孙新强, 陈克杰, 杨一恭, 等. 营养条件和温度对利福霉素B生产强度的影响. 发酵科技通讯, 2020,49(2):63-67.
[10]   Sun X Q, Chen K J, Yang Y G, et al. Effect of nutritional conditions and temperature on the production intensity of rifamycin B. Bulletin of Fermentation Science and Technology, 2020,49(2):63-67.
[11]   郭磊, 杨磊, 刘远, 等. ARTP诱变育种技术在菌种选育中的应用//2013中国生物发酵产业年会论文集. 上海:中国生物发酵产业协会, 2013: 56-60.
[11]   Guo L, Yang L, Liu Y, et al. Application of ARTP mutation breeding technology in strain breeding//Proceedings of 2013 China Bio-Fermentation Industry Annual Conference. Shanghai: China Bio- Fermentation Industry Association, 2013: 56-60.
[12]   王立言, 张雪, 张翀, 等. 常压室温等离子体(ARTP)诱变育种技术及其应用//2013年国际氨基酸产业发展高峰论坛论文集. 上海: 中国生物发酵产业协会, 2013: 72-77.
[12]   Wang L Y, Zhang X, Zhang C, et al. Atmospheric pressure room temperature plasma (ARTP) mutation breeding technology and its application//Proceedings of the 2013 International Amino Acid Industry Development Summit Forum. Shanghai: China Bio-Fermentation Industry Association, 2013: 72-77.
[13]   张雪, 张晓菲, 王立言, 等. 常压室温等离子体生物诱变育种及其应用研究进展. 化工学报, 2014,65(7):2676-2684.
[13]   Zhang X, Zhang X F, Wang L Y, et al. Recent progress on atmospheric and room temperature plasma mutation breeding technology and its applications. CIESC Journal, 2014,65(7):2676-2684.
[14]   朱瑞敏, 邱晨曦, 韩悦, 等. 微生物育种物理诱变技术ARTP的应用进展. 生物技术世界, 2016,13(4):20-23.
[14]   Zhu R M, Qiu C X, Han Y, et al. The application progress of ARTP which is a physical mutation breeding technology of Microorganism. Biotech World, 2016,13(4):20-23
[15]   胡莉莉, 梁剑光, 陈中兵, 等. 盐霉素高产菌株的筛选研究. 中国抗生素杂志, 2015,40(12):906-912.
[15]   Hu L L, Liang J G, Chen Z B, et al. The study of screening for high-salinomycin-yield mutants. Chinese Journal of Antibiotics, 2015,40(12):906-912.
[16]   张嗣良, 储炬. 多尺度微生物过程优化. 北京: 化学工业出版社, 2003: 40-45.
[16]   Zhang S L, Chu J. Multi-scale microbial process optimization. Beijing:Chemical Industry Press, 2003: 40-45.
[17]   王莹, 郝玉有, 庄英萍, 等. 微生物高通量筛选中微孔板 KLa的测定. 工业微生物, 2010,40(2):15-19.
[17]   Wang Y, Hao Y Y, Zhuang Y P, et al. Determination of KLa of microplate in high-throughput screening bioprocess. Industrial Microbiology, 2010,40(2):15-19.
[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[3] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[4] SONG Jia-wen, TIAN Su, ZHANG Yu-ru, WANG Zhi-zhen, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. Genome Shuffling Enhances Transglutaminase Production of Streptomyces mobaraensis[J]. China Biotechnology, 2017, 37(9): 105-111.
[5] GUO Wei-ting, ZHANG Hui, ZHA Dong-feng, HUANG Han-feng, HUANG Jing, GAO Hong-liang, CHANG Zhong-yi, JIN Ming-fei, LU Wei . A Rapid Method of Screening for Thermostable Transglutaminase from Streptomyces mobaraensis[J]. China Biotechnology, 2015, 35(8): 83-89.
[6] YANG Jiang-ke, MAO Ling, ZHOU Wen-jing, CHEN Jiang-shan, HU Chen. De Novo Design and High-throughput Screening Strategy Achieved Over Expression of Yarrowia lipolytica Lipase YLL in Pichia patoris[J]. China Biotechnology, 2014, 34(8): 54-60.
[7] LI Guo-kun, GAO Xiang-dong, XU Chen. Advances on Mammalian Cell Expression System[J]. China Biotechnology, 2014, 34(1): 95-100.
[8] QIAO Chang-sheng, ZHAO Nan, SHI Man-man, ZHU Ming, LI Xue. Mutation Screening of Production Strains of Spinosad Based on Ribosome Engineering Theory through ARTP[J]. China Biotechnology, 2014, 34(1): 71-78.
[9] FAN Li-xia, GAO An-hui, ZHOU Yu-bo, LI Jia. Establishment of a Cell-based High-throughput Screening Model Targeting the IRE1/XBP1 Signaling Pathway[J]. China Biotechnology, 2012, 32(01): 73-80.
[10] . Research Advance in Recombinant Expression of Microbial Lipases[J]. China Biotechnology, 2008, 28(5): 135-140.
[11] . Development and application of RNAi interference libraries in functional genomics[J]. China Biotechnology, 2006, 26(07): 84-89.