Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (5): 91-99    DOI: 10.13523/j.cb.2112044
    
Construction of Yeast Surface Display System and Application in Cellulose Degrading
LIU Ming-zhu1,ZHANG Liang1,GUO Fang1,LI Chun1,2,3,FENG Xu-dong1,**()
1 Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
3 Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
Download: HTML   PDF(1536KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cellulose is a low-cost and renewable resource with abundant reserves, but it is difficult to be used because of its compact structure. Currently, the degradation of cellulose requires the cooperation of a variety of cellulases, but the high cost and the difficulty of re-use of free cellulase have limited its wide application. Yeast surface display technology can display multiple cellulase enzymes on the cell surface after being fused with the anchoring protein, so that a yeast surface display cellulase system could be constructed. This system can degrade cellulose efficiently. On the one hand, it has the advantages of surface display, such as easy recycling, good stability, simple operation, and low cost; on the other hand, it can also degrade cellulose into glucose effectively, and has the potential to produce bioethanol by metabolism. The paper summarizes the construction principles of a yeast surface display system, and divides yeast surface display systems into direct display systems and indirect display systems according to the different anchoring methods of exogenous proteins. The direct display system is that the exogenous protein is directly connected to the cell through the anchor protein. Indirect display systems are linked to cells through exogenous proteins by means of scaffolds. Factors affecting the efficiency of the display system mainly include cell type, anchor protein, scaffold, environmental factors and promoter type. The surface display system consists of GPI system, Pir system and FlO1 system according to different anchor proteins. The yeast surface display cellulase system can ferment cellulose to produce ethanol, and a lot of progress has been made so far, which provides a reference for the construction of an efficient yeast surface display cellulase system and other multi-enzyme systems. The review describes the construction principles of a yeast surface display system, summarizes the influence of major factors on the display system, and introduces the application of this technology in the degradation of cellulose. It provides guidance for the construction of high-efficiency yeast surface display of cellulase and other multi-enzyme systems.



Key wordsYeast surface display      Cellulase      Anchor protein     
Received: 19 December 2021      Published: 17 June 2022
ZTFLH:  Q814  
Corresponding Authors: Xu-dong FENG     E-mail: xd.feng@bit.edu.cn
Cite this article:

LIU Ming-zhu,ZHANG Liang,GUO Fang,LI Chun,FENG Xu-dong. Construction of Yeast Surface Display System and Application in Cellulose Degrading. China Biotechnology, 2022, 42(5): 91-99.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2112044     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I5/91

组分 聚合度 分子量
/kDa
相对含量
/%
相对
摩尔比
β-1, 3-葡聚糖 1 500 240 50 1.0
β-1, 6-葡聚糖 150 24 10 2
甘露糖蛋白 100~200 40 1.2~2.4
几丁质 120 25 1~3 0.1~0.3
Table 1 The main components of the cell wall of Saccharomyces cerevisiae
Fig.1 The diagram of the construction of cellulase display on the surface of yeast cells (a) Direct display system (b) Indirect display system Where cohesin-dockerin is selected as an example
Fig.2 Typical yeast surface display system (a) GPI system. This system can display the N-terminus of the foreign protein, which is covalently linked to β-1, 6-glucan (b) Pir system. This system can display the N-terminus of the foreign protein, or insert the foreign protein into the Pir protein, which is covalently linked with β-1, 3-glucan (c) Flo1 system. This system can display the C-terminus or N-terminus of the foreign protein, which is non-covalently linked to β-1, 3-glucan
作者 参考文献 年份 展示方式 锚定蛋白 底物类型 底物浓度/(g/L) 乙醇产量/(g/L) ESCY/%
Beak等 [44] 2012 直接展示 Agα PASC 10 2.21 42.77
Fan等 [20] 2012 间接展示 Aga PASC 10 1.091 22.01
Tsai等 [45] 2013 间接展示 Aga PASC 10 1.9 38.33
Yamada等 [1] 2013 直接展示 Agα PASC 20 4.3 43.38
Kim等 [46] 2013 间接展示 Aga PASC 10 1.86 37.52
Liang等 [27] 2014 直接展示 SED1 Avicel 10 1.4 28.24
Liu等 [47] 2015 直接展示 SED1 PASC 10 2.9 58.51
Fan等 [48] 2016 间接展示 Aga CMC 10 3.26 65.77
Fan等 [48] 2016 间接展示 Aga PASC 10 1.09 21.99
Liu等 [49] 2016 直接展示 SED1 PASC 20 6.7 67.59
Grimm等 [37] 2018 间接展示 Aga Avicel 10 1.412 28.49
Anandharaj等 [22] 2020 间接展示 多种 Avicel 10 3.09 62.35
Anandharaj等 [22] 2020 间接展示 多种 PASC 20 8.61 86.86
Table 2 Yeast surface-displayed cellulase system for ethanol fermentation
[1]   Yamada R, Nakatani Y, Ogino C, et al. Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae. AMB Express, 2013, 3: 34.
doi: 10.1186/2191-0855-3-34
[2]   Wachtmeister J, Rother D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Current Opinion in Biotechnology, 2016, 42: 169-177.
doi: S0958-1669(16)30140-9 pmid: 27318259
[3]   Smith M R, Gao H, Prabhu P, et al. Elucidating structure-performance relationships in whole-cell cooperative enzyme catalysis. Nature Catalysis, 2019, 2 (9): 809-819.
doi: 10.1038/s41929-019-0321-8
[4]   Hossain S A, Rahman S R, Ahmed T, et al. An overview of yeast cell wall proteins and their contribution in yeast display system. Asian Journal of Medical and Biological Research, 2020, 5(4): 246-257.
doi: 10.3329/ajmbr.v5i4.45261
[5]   Seo M J, Schmidt Dannert C. Organizing multi-enzyme systems into programmable materials for biocatalysis. Catalysts, 2021, 11(4): 409.
doi: 10.3390/catal11040409
[6]   冯旭东, 李春. 酶的改造及其催化工程应用. 化学进展, 2015, 27(11): 1649-1657.
doi: 10.7536/PC150419
[6]   Feng X D, Li C. The improvement of enzyme properties and its catalytic engineering strategy. Progress in Chemistry, 2015, 27(11): 1649-1657.
doi: 10.7536/PC150419
[7]   Salgaonkar M, Nadar S S, Rathod V K. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. International Journal of Biological Macromolecules, 2018, 113: 464-475.
doi: S0141-8130(17)34734-7 pmid: 29458106
[8]   Asghar A, Iqbal N, Noor T, et al. Efficient one-pot synthesis of a hexamethylenetetramine-doped Cu-BDC metal-organic framework with enhanced CO2 adsorption. Nanomaterials (Basel, Switzerland), 2019, 9(8): 1063.
[9]   Trobo Maseda L, H Orrego A, Guisan J M, et al. Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: glycosylation of resveratrol 3-O-β-D-glucoside. International Journal of Biological Macromolecules, 2020, 157: 510-521.
doi: S0141-8130(20)32982-2 pmid: 32344088
[10]   Thygesen A, Oddershede J, Lilholt H, et al. On the determination of crystallinity and cellulose content in plant fibres. Cellulose, 2005, 12(6): 563-576.
doi: 10.1007/s10570-005-9001-8
[11]   Yamada R, Hasunuma T, Kondo A. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnology Advances, 2013, 31(6): 754-763.
doi: 10.1016/j.biotechadv.2013.02.007
[12]   Ellis G A, Klein W P, Lasarte-Aragonés G, et al. Artificial multienzyme scaffolds: pursuing in vitro substrate channeling with an overview of current progress. ACS Catalysis, 2019, 9(12): 10812-10869.
doi: 10.1021/acscatal.9b02413
[13]   Bae J G, Kuroda K, Ueda M. Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Applied and Environmental Microbiology, 2015, 81(1): 59-66.
doi: 10.1128/AEM.02864-14
[14]   Bischof R H, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microbial Cell Factories, 2016, 15(1): 106.
doi: 10.1186/s12934-016-0507-6 pmid: 27287427
[15]   Oh E J, Jin Y S. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Research, 2020, 20(1): foz089.
doi: 10.1093/femsyr/foz089
[16]   Andreu C, del Olmo M L. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Applied Microbiology and Biotechnology, 2018, 102(6): 2543-2561.
doi: 10.1007/s00253-018-8827-6
[17]   Liu X, Cheng J, Zhang G, et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nature Communications, 2018, 9: 448.
doi: 10.1038/s41467-018-02883-z
[18]   Liang B, Li L, Tang X J, et al. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosensors and Bioelectronics, 2013, 45: 19-24.
doi: 10.1016/j.bios.2013.01.050 pmid: 23454338
[19]   Tabañag I D F, Chu I M, Wei Y H, et al. The role of yeast-surface-display techniques in creating biocatalysts for consolidated BioProcessing. Catalysts, 2018, 8(3): 94.
doi: 10.3390/catal8030094
[20]   Fan L H, Zhang Z J, Yu X Y, et al. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. PNAS, 2012, 109(33): 13260-13265.
doi: 10.1073/pnas.1209856109
[21]   Tanaka T, Matsumoto S, Yamada M, et al. Display of active beta-glucosidase on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. Applied Microbiology and Biotechnology, 2013, 97(10): 4343-4352.
doi: 10.1007/s00253-013-4733-0
[22]   Anandharaj M, Lin Y J, Rani R P, et al. Constructing a yeast to express the largest cellulosome complex on the cell surface. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5): 2385-2394.
[23]   Yang X Y, Tang H T, Song M H, et al. Development of novel surface display platforms for anchoring heterologous proteins in Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18(1): 85.
doi: 10.1186/s12934-019-1133-x
[24]   Yamada R, Taniguchi N, Tanaka T, et al. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbial Cell Factories, 2010, 9: 32.
doi: 10.1186/1475-2859-9-32
[25]   Apiwatanapiwat W, Murata Y, Kosugi A, et al. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Applied Microbiology and Biotechnology, 2011, 90(1): 377-384.
doi: 10.1007/s00253-011-3115-8 pmid: 21327413
[26]   Artzi L, Bayer E A, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology, 2017, 15 (2): 83-95.
doi: 10.1038/nrmicro.2016.164 pmid: 27941816
[27]   Liang Y Y, Si T, Ang E L, et al. Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2014, 80(21): 6677-6684.
doi: 10.1128/AEM.02070-14
[28]   Fan S Q, Liang B, Xiao X X, et al. Controllable display of sequential enzymes on yeast surface with enhanced biocatalytic activity toward efficient enzymatic biofuel cells. Journal of the American Chemical Society, 2020, 142(6): 3222-3230.
doi: 10.1021/jacs.9b13289
[29]   Cunha J T, Romaní A, Inokuma K, et al. Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnology for Biofuels, 2020, 13: 138.
doi: 10.1186/s13068-020-01780-2
[30]   Camattari A, Goh A, Yip L Y, et al. Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microbial Cell Factories, 2016, 15(1): 139.
doi: 10.1186/s12934-016-0540-5 pmid: 27515025
[31]   Liu X Y, Chi Z, Liu G L, et al. Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metabolic Engineering, 2010, 12(5): 469-476.
doi: 10.1016/j.ymben.2010.04.004
[32]   Ni X M, Yue L X, Chi Z M, et al. Alkaline protease gene cloning from the marine yeast Aureobasidium pullulans HN2-3 and the protease surface display on Yarrowia lipolytica for bioactive peptide production. Marine Biotechnology (New York), 2009, 11( 1): 81-89.
[33]   Liu Z, Inokuma K, Ho S H, et al. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2017, 114(6): 1201-1207.
doi: 10.1002/bit.26252
[34]   Liu G L, Yue L X, Chi Z, et al. The surface display of the alginate lyase on the cells of Yarrowia lipolytica for hydrolysis of alginate. Marine Biotechnology, 2009, 11(5): 619-626.
doi: 10.1007/s10126-009-9178-1
[35]   Yanase S, Hasunuma T, Yamada R, et al. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology, 2010, 88(1): 381-388.
doi: 10.1007/s00253-010-2784-z
[36]   Wang X D, Feng X D, Lv B, et al. Enhanced yeast surface display of β-glucuronidase using dual anchor motifs for high-temperature glycyrrhizin hydrolysis. AIChE Journal, 2019, 65(9): e16629.
[37]   Grimm A R, Sauer D F, Polen T, et al. A whole cell E. coli display platform for artificial metalloenzymes: poly(phenylacetylene) production with a rhodium-nitrobindin metalloprotein. ACS Catalysis, 2018, 8(3): 2611-2614.
doi: 10.1021/acscatal.7b04369
[38]   Sato H, Hayashi T, Ando T, et al. Hybridization of modified-heme reconstitution and distal histidine mutation to functionalize sperm whale myoglobin. Journal of the American Chemical Society, 2004, 126(2): 436-437.
doi: 10.1021/ja038798k
[39]   Onoda A, Fukumoto K, Arlt M, et al. A rhodium complex-linked β-barrel protein as a hybrid biocatalyst for phenylacetylene polymerization. Chemical Communications (Cambridge, England), 2012, 48(78): 9756-9758.
doi: 10.1039/c2cc35165j
[40]   Grimm A R, Sauer D F, Davari M D, et al. Cavity size engineering of a β-barrel protein generates efficient biohybrid catalysts for olefin metathesis. ACS Catalysis, 2018, 8(4): 3358-3364.
doi: 10.1021/acscatal.7b03652
[41]   Dong M S, Li T P, Li S H, et al. Expression and enzymatic characterization of rice α-galactosidase II displayed on yeast cell surface. Process Biochemistry, 2019, 81: 57-62.
doi: 10.1016/j.procbio.2019.03.016
[42]   Dong M S, Gong Y, Guo J, et al. Optimization of production conditions of rice α-galactosidase II displayed on yeast cell surface. Protein Expression and Purification, 2020, 171: 105611.
doi: 10.1016/j.pep.2020.105611
[43]   Inokuma K, Hasunuma T, Kondo A. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnology for Biofuels, 2014, 7(1): 8.
doi: 10.1186/1754-6834-7-8
[44]   Baek S H, Kim S, Lee K, et al. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme and Microbial Technology, 2012, 51(6-7): 366-372.
doi: 10.1016/j.enzmictec.2012.08.005
[45]   Tsai S L, DaSilva N A, Chen W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synthetic Biology, 2013, 2(1): 14-21.
doi: 10.1021/sb300047u
[46]   Kim S, Baek S H, Lee K, et al. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microbial Cell Factories, 2013, 12: 14.
doi: 10.1186/1475-2859-12-14
[47]   Liu Z, Inokuma K, Ho S H, et al. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnology for Biofuels, 2015, 8: 162.
doi: 10.1186/s13068-015-0344-6
[48]   Fan L H, Zhang Z J, Mei S, et al. Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars. Biotechnology for Biofuels, 2016, 9: 137.
doi: 10.1186/s13068-016-0554-6
[49]   Liu Z, Ho S H, Sasaki K, et al. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production. Scientific Reports, 2016, 6: 24550.
doi: 10.1038/srep24550
[50]   Tabañag I D F, Chu I M, Wei Y H, et al. Ethanol production from hemicellulose by a consortium of different genetically-modified Sacharomyces cerevisiae. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89: 15-25.
doi: 10.1016/j.jtice.2018.04.029
[1] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[2] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[3] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[4] Ying-ying ZHANG,Bin TANG,Guo-cheng DU. Study on the Intracellular Glycosyl Donor and Structural Function of Cellobiose Synthase from Rhizopus stolonifer[J]. China Biotechnology, 2018, 38(4): 38-45.
[5] MENG Qing-ting, TANG Bin. The Role of Carbon Metabolism Repressor CRE in the Regulation of Cellulase Produced by Rhizopus stolonifer[J]. China Biotechnology, 2016, 36(3): 31-37.
[6] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[7] WU Qiong, WANG Meng, LI Ya-Qian, GAO Shi-Gang, YU Chuan-Jin, SUN Jia-Nan, ZHANG Tai-Long, CHEN Jie. Characterization of Cellulase Solution Produced by Leptosphaerulina chartarum SJTU59 and Analysis of Conserved Regions of Cellulase Genes[J]. China Biotechnology, 2014, 34(3): 61-67.
[8] YANG Hua-jun, ZOU Shao-lan, LIU Cheng, MA Yuan-yuan, MA Xiang-xia, HONG Jie-fang. Advance in Research on Cellulase Expression in Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 75-83.
[9] CAI Jing-jing, DUAN Xue-hui, XIE Liang, ZHENG Xi-fang, SHEN Jiang-tao. Production of Cellulases by Solid State Fermentation with Three Strains Mixed[J]. China Biotechnology, 2013, 33(7): 57-63.
[10] GU Rui-meng, LI Yong-hao, TIAN Chao-guang. The Medium Optimization of Cellulases Fermentation of Neurospora crassa by Response Surface Methodology[J]. China Biotechnology, 2012, 32(03): 76-82.
[11] CHEN Ke, HUANG Xiao, LU Lei, XING Yun, HOU Jing, WU Jie, LIU Jing-jing. Comparison of celY Gene from Erwinia chrysanthemi Expression in Escherichia coli Driven by Different Regulatory Elements[J]. China Biotechnology, 2012, 32(02): 24-28.
[12] LING Min, LIANG Gang, QIN Yong-Ling, LI Nan, LIANG Zhi-Qun. Analysis of Cellulase Regulator ACEII Interaction with cbh1 Promoter Fragment in Trichoderma koningii[J]. China Biotechnology, 2009, 29(10): 60-63.
[13] 尹娟 YIN Juan. Research Progress on Determination of Cellulase Activity and Gene Expression by Biosensor[J]. China Biotechnology, 2009, 29(01): 86-92.
[14] . Experimental Study on the Effects of surfactants on Cellulase from Trichoderma viride[J]. China Biotechnology, 2006, 26(08): 62-66.