Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (6): 76-85    DOI: 10.13523/j.cb.2201051
    
Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms
BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng()
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300372, China
Download: HTML   PDF(4214KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Odd-chain fatty acids (OCFAs) are widely distributed in nature, while their level is low. OCFA has huge application potential in the fields of medicine, health, and industry. The current methods of obtaining OCFA are mainly included in the extraction and chemical synthesis, which limits its application due to the higher-cost and the lower-efficiency. Microbial fermentation is one of the most promising strategies for large-scale industrial production. This article briefly discusses the scope of application of OCFA, summarizes the microorganisms that can naturally synthesize OCFA, introduces in detail the related metabolic pathways involved in microbial synthesis of OCFA, and reviews the current strategies of genetic engineering and fermentation regulation for improving OCFA production. Taken together, this summary aims to provide a more systematic and comprehensive theoretical basis for improving OCFA production of microorganism by synthetic biology strategies.



Key wordsOdd-chain fatty acid(OCFA)      Microorganism fermentation      Synthetic biology      Metabolic pathways     
Received: 27 January 2022      Published: 07 July 2022
ZTFLH:  Q939  
Corresponding Authors: Jing-sheng CHENG     E-mail: jscheng@tju.edu.cn
Cite this article:

BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms. China Biotechnology, 2022, 42(6): 76-85.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2201051     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I6/76

OCFA的种类 用途 作用机理 参考文献
十三烷二酸(tridecanedioic acid) 用于合成透明聚酰胺 与4,4'-二氨基二环己基甲烷(4,4'-diaminodicyclohexyl methane,PACM)成盐进行反应 [22]
壬二酸(azelaic acid) 治疗黄褐斑、痤疮病、恶性色素病 竞争性酪氨酸酶抑制剂 [23-24]
(9Z)-9-十七碳烯酸[(9Z)-9-heptadecenoic acid] 治疗牛皮癣、过敏、自身免疫疾病 阻止或减少TNF-α等介质的释放,抑制淋巴细胞活化,刺激巨噬细胞,使炎症过程正常化 [15]
庚烷酸(heptanoate) 抗惊厥、治疗癫痫病;长链脂肪酸氧化紊乱 代谢成C5酮、β-酮戊酸盐或β-羟基戊酸盐,通过一元羧酸转运体进入大脑;提供血管间质代谢物,取代缺乏的三羧酸循环中间体;提高有效的能量代谢,显著改善心脏结构和功能 [4,25]
十五烷酸(pentadecanoic acid);十七烷酸(heptadecanoic acid) 与心血管疾病、肥胖症、Ⅱ型糖尿病的发病呈负相关 OCFA能够降低患Ⅱ型糖尿病的风险;血浆磷脂中的C15:0和C17:0浓度与心血管疾病和肥胖指标呈负相关 [25-26]
十五烷酸(pentadecanoic acid) 评估乳脂摄入的标记物 OCFA来源于瘤胃微生物发酵或微生物从头合成,然后转入宿主动物,表现为胆固醇、磷脂、血清和脂肪组织中的C15:0的相对含量与乳脂摄入呈正相关 [27-28]
十五烷酸(pentadecanoic acid) 对人乳腺癌MCF-7/SC细胞具有选择性的细胞毒性作用 抑制IL-6诱导的JAK2/STAT3信号通路,诱导细胞周期阻滞在sub-G1期,并促进MCF-7/SC中半胱天冬酶依赖性细胞凋亡 [29]
十五烷酸(pentadecanoic acid) 减轻炎症、贫血、血脂异常和体内纤维化 可能是通过与关键代谢调节剂结合和修复线粒体功能 [30]
十一烷酸(undecanoic acid);十五烷酸(pentadecanoic acid) 抑制癌细胞增殖 对组蛋白去乙酰化酶具有抑制作用,能够剂量依赖性地促进MCF-7乳腺癌和A549肺癌细胞中α-微管蛋白的乙酰化 [31]
Table 1 Summary of application of OCFA
Fig.1 Chemical structures of common odd-chain and even-chain fatty acid
Fig.2 Endogenous synthesis and metabolic pathways of fatty acids in Y. lipolyticaBolded blue font indicates important intermediate metabolites of the odd-chain fatty acid synthesis pathway; Blue genes indicate overexpression targets; red genes indicate knockout targets; GPD1, encoding NAD+-dependent glycerol-3-phopshate dehydrogenase; GUT2, encoding glycerol-3-phosphate dehydrogenase; DGA1/DGA2, encoding diacylglycerol transferase; LRO1, encoding triacylglycerol synthases; TGL3/TGL4, encoding triacylglycerol lipases; FAA1, encoding acyl-CoA synthetases; PXA1/PXA2, encoding peroxisomal acyl-CoA transporter; POX1-6, encoding the six acyl-CoA oxidases; PEX10, encoding peroxisomal membrane E3 ubiquitin ligase; MFE1, encoding the multifunctional enzyme; POT1, encoding peroxisomal 3-oxoacyl-CoA-thiolase; ACS1, encoding acetyl-CoA synthetase; ACC1, encoding acetyl-CoA carboxylase; ACL1, encoding ATP-citrate lyase genes; PHD1, encoding 2-methylcitrate dehydratase
Fig.3 The initiation pathway of fatty acid synthesisaccABCD, encoding acetyl-CoA carboxylase; fabA, encoding 3-hydroxydecanoyl-ACP dehydratase; fabB, encoding beta-ketoacyl-ACP synthase; fabD, encoding malonyl-CoA: ACP transacylase; fabF, encoding 3-oxoacyl-ACP synthase Ⅱ; fabG, encoding 3-oxoacyl-ACP reductase; fabH, encoding beta-ketoacyl-ACP synthase III; fabI, encoding enoyl-ACP reductase
Fig.4 Metabolic pathways for microbial synthesis of OCFABlue arrows indicate precursors for propionyl coenzyme A; Red arrows indicate the metabolic pathway for conversion of propionyl coenzyme A to OCFA; accABCD, encoding acetyl-CoA carboxylase; ADH, encoding alcohol dehydrogenase; ALDH, encoding aldehyde dehydrogenase; PduCDE, encoding adenosylcobalamin-dependent diol dehydratase; PduP, encoding propionaldehyde dehydrogenase; PCS, propionyl-CoA synthetase; fabA, encoding 3-hydroxydecanoyl-ACP dehydratase; fabB, encoding beta-ketoacyl-ACP synthase; fabD, encoding malonyl-CoA: ACP transacylase; fabF, encoding 3-oxoacyl-ACP synthase Ⅱ; fabG, encoding 3-oxoacyl-ACP reductase; fabH, encoding beta-ketoacyl-ACP synthase III; fabI, encoding enoyl-ACP reductase; αDOX, α-dioxygenases
生产菌株 OCFA组成 主要策略 含量 参考文献
Escherichia coli C11:0,C13:0 丙酸为碳源,并在大肠杆菌中耦合表达酰基-ACP硫酯酶、丙酰辅酶A合酶和β-酮酰-ACP合酶III 1 205 mg/L,占总脂肪酸的83.2% [9]
Escherichia coli C11:0,C13:0,C15:0 引入硫酯酶基因,过表达来源于S. enterica的丙酰辅酶A合酶,并外源补加丙酸 297 mg/L [41]
Escherichia coli C7-C13的mcl-PHA 引入丙酸同化和代谢途径至反向脂肪酸β-氧化,敲除丙酮酸氧化酶和丙酮酸甲酸裂解酶,异源表达来源于Ralstonia eutrophaprpPprpE基因 奇数链mcl-PHA约占总产量的20.03% [59]
Yarrowia lipolytica C15:0,C17:0,C17:1,C19:0 构建包含七个基因的模块化代谢途径从头合成奇数链脂肪酸 0.36 g/L [11]
Yarrowia lipolytica C15:0,C17:0,C17:1,C19:0 评估不同来源的丙酸激活酶和丙酰辅酶A转移酶,同时表达β-酮硫醇酶 1.87 g/L [49]
Table 2 Advances in engineering strategies promoting OCFA synthesis by microorganisms
[1]   Lamont M, Amezquita E M, Ganuza T E. Food additive useful in processed food product or food component, and treating gene metabolic disorders comprises microalgal anaplerotic oil rich in saturated tridecanoic, pentadecanoic, and heptadecanoic odd-chain fatty acids: US20210051988A1. 2021-02-25. [2021-11-20]. https://www.webofscience.com/wos/alldb/full-record/DIIDW:202119412Q.
[2]   Dornan K, Gunenc A, Oomah B D, et al. Odd chain fatty acids and odd chain phenolic lipids (alkylresorcinols) are essential for diet. Journal of the American Oil Chemists’ Society, 2021, 98(8): 813-824.
doi: 10.1002/aocs.12507
[3]   Liu H B, Yu H Y, Xia J, et al. Topical azelaic acid, salicylic acid, nicotinamide, sulphur, zinc and fruit acid (alpha-hydroxy acid) for acne. The Cochrane Database of Systematic Reviews, 2020, 5(5): CD011368.
[4]   Gillingham M B, Heitner S B, Martin J, et al. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial. Journal of Inherited Metabolic Disease, 2017, 40(6): 831-843.
doi: 10.1007/s10545-017-0085-8 pmid: 28871440
[5]   Imamura F, Sharp S J, Koulman A, et al. A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: the EPIC-InterAct case-cohort study. PLoS Medicine, 2017, 14(10): e1002409.
doi: 10.1371/journal.pmed.1002409
[6]   Weitkunat K, Schumann S, Nickel D, et al. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. The American Journal of Clinical Nutrition, 2017, 105(6): 1544-1551.
[7]   黄霄霄. 从天然偶碳脂肪酸合成奇碳脂肪酸的研究. 无锡: 江南大学, 2013.
[7]   Huang X X. Synthesis of odd-numbered fatty acids from natural even-numbered fatty acids. Wuxi: Jiangnan University, 2013.
[8]   Zhang L S, Liang S, Zong M H, et al. Microbial synthesis of functional odd-chain fatty acids: a review. World Journal of Microbiology & Biotechnology, 2020, 36(3): 35.
doi: 10.1007/s11274-020-02814-5
[9]   Wu H, San K Y. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli. Biotechnology and Bioengineering, 2014, 111(11): 2209-2219.
doi: 10.1002/bit.25296
[10]   Park Y K, Dulermo T, Ledesma-Amaro R, et al. Optimization of odd chain fatty acid production by Yarrowia lipolytica. Biotechnology for Biofuels, 2018, 11: 158.
doi: 10.1186/s13068-018-1154-4
[11]   Park Y K, Ledesma-Amaro R, Nicaud J M. De novo biosynthesis of odd-chain fatty acids in Yarrowia lipolytica enabled by modular pathway engineering. Frontiers in Bioengineering and Biotechnology, 2020, 7: 484.
doi: 10.3389/fbioe.2019.00484
[12]   Bhatia S K, Gurav R, Choi T R, et al. A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY 01 by medium engineering. Bioresource Technology, 2019, 286: 121383.
doi: 10.1016/j.biortech.2019.121383
[13]   Fontanille P, Kumar V, Christophe G, et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technology, 2012, 114: 443-449.
doi: 10.1016/j.biortech.2012.02.091 pmid: 22464419
[14]   Ledesma-Amaro R, Dulermo R, Niehus X, et al. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metabolic Engineering, 2016, 38: 38-46.
doi: S1096-7176(16)30048-9 pmid: 27301328
[15]   Degwert J, Jacob J, Steckel F. Use of cis-9-heptadecenoic acid for treating psoriasis and allergies: EP, EP19940912534. 1993-03-24[2021-11-20]. https://europepmc.org/article/PAT/EP0690710.
[16]   Shirley M. Correction to: triheptanoin: first approval. Drugs, 2020, 80(17): 1873.
doi: 10.1007/s40265-020-01426-5
[17]   Avis T J, Boulanger R R, Bélanger R R. Synthesis and biological characterization of (Z)-9-heptadecenoic and (Z)-6-methyl-9-heptadecenoic acids: fatty acids with antibiotic activity produced by Pseudozyma flocculosa. Journal of Chemical Ecology, 2000, 26(4): 987-1000.
doi: 10.1023/A:1005464326573
[18]   Weitkunat K, Bishop C A, Wittmüss M, et al. Effect of microbial status on hepatic odd-chain fatty acids is diet-dependent. Nutrients, 2021, 13(5): 1546.
doi: 10.3390/nu13051546
[19]   Toral P G, Hervás G, Badia A D, et al. Effect of dietary lipids and other nutrients on milk odd- and branched-chain fatty acid composition in dairy ewes. Journal of Dairy Science, 2020, 103(12): 11413-11423.
doi: 10.3168/jds.2020-18580 pmid: 33069404
[20]   Aglago E K, Biessy C, Torres-Mejía G, et al. Association between serum phospholipid fatty acid levels and adiposity in Mexican women. Journal of Lipid Research, 2017, 58(7): 1462-1470.
doi: 10.1194/jlr.P073643 pmid: 28465289
[21]   Park Y K, Nicaud J M. Metabolic engineering for unusual lipid production in Yarrowia lipolytica. Microorganisms, 2020, 8(12): 1937.
doi: 10.3390/microorganisms8121937
[22]   沙莎, 郑玉斌. 利用奇数碳二元酸制备透明聚酰胺的研究. 塑料科技, 2016, 44(8): 37-41.
[22]   Sha S, Zheng Y B. Study on transparent polyamide with odd carbon dicarboxylic acid. Plastics Science and Technology, 2016, 44(8): 37-41.
[23]   Blaskovich M A T, Elliott A G, Kavanagh A M, et al. In vitro antimicrobial activity of acne drugs against skin-associated bacteria. Scientific Reports, 2019, 9(1): 14658.
doi: 10.1038/s41598-019-50746-4 pmid: 31601845
[24]   Searle T, Ali F R, Al-Niaimi F. The versatility of azelaic acid in dermatology. The Journal of Dermatological Treatment, 2022, 33(2): 722-732.
doi: 10.1080/09546634.2020.1800579
[25]   Vockley J, Charrow J, Ganesh J, et al. Triheptanoin treatment in patients with pediatric cardiomyopathy associated with long chain-fatty acid oxidation disorders. Molecular Genetics and Metabolism, 2016, 119(3): 223-231.
doi: S1096-7192(16)30205-0 pmid: 27590926
[26]   Prada M, Wittenbecher C, Eichelmann F, et al. Association of the odd-chain fatty acid content in lipid groups with type 2 diabetes risk: a targeted analysis of lipidomics data in the EPIC-Potsdam cohort. Clinical Nutrition, 2021, 40(8): 4988-4999.
doi: 10.1016/j.clnu.2021.06.006
[27]   Jenkins B, Aoun M, Feillet-Coudray C, et al. The dietary total-fat content affects the in vivo circulating C15: 0 and C17: 0 fatty acid levels independently. Nutrients, 2018, 10(11): 1646.
doi: 10.3390/nu10111646
[28]   Poppitt S D. Cow’s milk and dairy consumption: is there now consensus for cardiometabolic health. Frontiers in Nutrition, 2020, 7: 574725.
doi: 10.3389/fnut.2020.574725
[29]   To N B, Nguyen Y T K, Moon J Y, et al. Pentadecanoic acid, an odd-chain fatty acid, suppresses the stemness of MCF-7/SC human breast cancer stem-like cells through JAK2/STAT3 signaling. Nutrients, 2020, 12(6): 1663.
doi: 10.3390/nu12061663
[30]   Venn-Watson S, Lumpkin R, Dennis E A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: could it be essential. Scientific Reports, 2020, 10: 8161.
doi: 10.1038/s41598-020-64960-y pmid: 32424181
[31]   Ediriweera M K, To N B, Lim Y, et al. Odd-chain fatty acids as novel histone deacetylase 6 (HDAC6) inhibitors. Biochimie, 2021, 186: 147-156.
[32]   Dowd M K, Farve M C. Fatty acid composition of Tilia spp. seed oils. Grasas Y Aceites, 2013, 64(3): 243-249.
doi: 10.3989/gya.096012
[33]   Wen J, Hu C Q, Fan S G. Chemical composition and nutritional quality of sea cucumbers. Journal of the Science of Food and Agriculture, 2010, 90(14): 2469-2474.
doi: 10.1002/jsfa.4108
[34]   Zhang L S, Xu P, Chu M Y, et al. Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630. World Journal of Microbiology & Biotechnology, 2019, 35(11): 164.
doi: 10.1007/s11274-019-2748-0
[35]   Buitenhuis B, Lassen J, Noel S J, et al. Impact of the rumen microbiome on milk fatty acid composition of Holstein cattle. Genetics, Selection, Evolution: GSE, 2019, 51(1): 23.
doi: 10.1186/s12711-019-0464-8 pmid: 31142263
[36]   Kolouchová I, Schreiberová O, Sigler K, et al. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species. FEMS Yeast Research, 2015, 15(7): fov076.
[37]   Wang F Z, Bi Y L, Diao J J, et al. Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in Schizochytrium sp. S31. Biotechnology for Biofuels, 2019, 12: 141.
doi: 10.1186/s13068-019-1484-x
[38]   Price N P J, Jackson M A, Hartman T M, et al. Branched chain lipid metabolism as a determinant of the N-acyl variation of Streptomyces natural products. ACS Chemical Biology, 2021, 16(1): 116-124.
doi: 10.1021/acschembio.0c00799 pmid: 33411499
[39]   Adli M. The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9(1): 1911.
doi: 10.1038/s41467-018-04252-2
[40]   Shi T Q, Huang H, Kerkhoven E J, et al. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Applied Microbiology and Biotechnology, 2018, 102(22): 9541-9548.
doi: 10.1007/s00253-018-9366-x
[41]   Wu H, San K Y. Engineering Escherichia coli for odd straight medium chain free fatty acid production. Applied Microbiology and Biotechnology, 2014, 98(19): 8145-8154.
doi: 10.1007/s00253-014-5882-5
[42]   Maurer S, Schewe H, Schrader J, et al. Investigation of fatty aldehyde and alcohol synthesis from fatty acids by αDox- or CAR-expressing Escherichia coli. Journal of Biotechnology, 2019, 305: 11-17.
doi: 10.1016/j.jbiotec.2019.08.011
[43]   Cao Y X, Xiao W H, Liu D, et al. Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metabolic Engineering, 2015, 29: 113-123.
doi: 10.1016/j.ymben.2015.03.005
[44]   Jin Z, Wong A, Foo J L, et al. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnology and Bioengineering, 2016, 113(4): 842-851.
doi: 10.1002/bit.25856
[45]   Liu H, Marsafari M, Wang F, et al. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metabolic Engineering, 2019, 56: 60-68.
doi: 10.1016/j.ymben.2019.08.017
[46]   Lee G J, Haliburton J R, Hu Z H, et al. Production of odd chain fatty acid derivatives in recombinant microbial cells: US, US20210324431A1. 2021-10-21[2021-11-20]. https://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20210324431.PGNR.
[47]   Tseng H C, Prather K L J. Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 17925-17930.
[48]   Ingram L O, Chevalier L S, Gabba E J, et al. Propionate-induced synthesis of odd-chain-length fatty acids by Escherichia coli. Journal of Bacteriology, 1977, 131(3): 1023-1025.
doi: 10.1128/jb.131.3.1023-1025.1977 pmid: 330493
[49]   Park Y K, Bordes F, Letisse F, et al. Engineering precursor pools for increasing production of odd-chain fatty acids in Yarrowia lipolytica. Metabolic Engineering Communications, 2021, 12: e00158.
doi: 10.1016/j.mec.2020.e00158
[50]   Han J, Hou J, Zhang F, et al. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei. Applied and Environmental Microbiology, 2013, 79(9): 2922-2931.
doi: 10.1128/AEM.03915-12
[51]   Imatoukene N, Verbeke J, Beopoulos A, et al. A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2017, 101(11): 4605-4616.
doi: 10.1007/s00253-017-8240-6 pmid: 28357546
[52]   Ledesma-Amaro R, Nicaud J M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Progress in Lipid Research, 2016, 61: 40-50.
doi: 10.1016/j.plipres.2015.12.001 pmid: 26703186
[53]   Ghogare R, Chen S L, Xiong X C. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for overproduction of fatty acids. Frontiers in Microbiology, 2020, 11: 1717.
doi: 10.3389/fmicb.2020.01717
[54]   Ferreira R, Teixeira P G, Gossing M, et al. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metabolic Engineering Communications, 2018, 6: 22-27.
doi: 10.1016/j.meteno.2018.01.002 pmid: 29896445
[55]   Fang L, Fan J, Luo S, et al. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nature Communications, 2021, 12(1): 4976.
doi: 10.1038/s41467-021-25243-w
[56]   Xu P, Gu Q, Wang W, et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nature Communications, 2013, 4: 1409.
doi: 10.1038/ncomms2425
[57]   Howard T P, Middelhaufe S, Moore K, et al. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7636-7641.
[58]   Řezanka T, Kolouchová I, Sigler K, Precursor directed biosynthesis of odd-numbered fatty acids by different yeasts. Folia Microbiologica, 2013, 110(19): 7636-7641.
[59]   Zhuang Q Q, Qi Q S. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers. Microbial Cell Factories, 2019, 18(1): 135.
doi: 10.1186/s12934-019-1186-x
[1] Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide[J]. China Biotechnology, 2022, 42(7): 90-100.
[2] ZHANG Da-lu,GE Qi,FENG Yi-bo,CHEN Wei-gang. Comparison and Analysis on Scientific Research Programs on DNA Data Storage[J]. China Biotechnology, 2022, 42(6): 116-129.
[3] LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor[J]. China Biotechnology, 2022, 42(5): 58-68.
[4] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[5] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[6] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[7] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[8] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[9] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[10] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[11] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[12] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[13] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[14] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[15] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.