Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 182-190    DOI: 10.13523/j.cb.2108071
Orginal Article     
Advances in Bacterial Adaptive Evolution under Heavy Metal Ion Stress
MA Chun-lan,LI Jin-hua,BAI Yu-fan,WEI Yun-lin()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
Download: HTML   PDF(1543KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Base mutation, gene re-arrangement or horizontal gene transfer are the fundamental mechanisms involved in bacterial evolution. During adaptive evolution, they are mainly affected by biological and abiological factors. Among them, heavy metal ion stress is also one of the main reasons during bacterial adaptive evolution, and it drives bacteria to adaptively strengthen the metabolic pathways related to metal input and/or transformation. On the other hand, excessive metal ion also can induce metal accumulation and efflux. Under heavy metal stress, heavy metal resistance (HMR) gene and enzyme protein play an important role involved in mechanisms of bacterial adaptive evolution. The mechanisms include the adaptation of isolation, the regulatory adaptation of metal regulatory protein and the adaptation of enzyme detoxification. The current research status and progress were summarized in this paper. Heavy metal ions have polluted the environment and threatened human health and ecosystem stability. Therefore, to elucidate the molecular mechanisms of adaptive evolution of bacteria under heavy metal stress, this paper not only enriches the content of bacterial evolutionism, but also provides a theoretical basis for the biological remediation of environmental pollution by heavy metal ions.



Key wordsHeavy metal ions      Bacteria      Adaptive evolution      Stress      Bioremediation     
Received: 30 August 2021      Published: 03 March 2022
ZTFLH:  Q93  
Corresponding Authors: Yun-lin WEI     E-mail: homework18@126.com
Cite this article:

MA Chun-lan,LI Jin-hua,BAI Yu-fan,WEI Yun-lin. Advances in Bacterial Adaptive Evolution under Heavy Metal Ion Stress. China Biotechnology, 2022, 42(1/2): 182-190.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108071     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/182

影响因素
(Influence factor)
分类
(Classification)
机制
(Mechanism)
例子
(Example)
参考文献
(Reference)
生物因素 细菌-噬菌体
的互作
BPI
噬菌体和前噬菌体介导的 HGT
1) 吸附抑制;
2) CRISPR-Cas系统;
3) 限制修饰系统(RM系统);
4) 毒素-抗毒素系统(TA系统);
5) Rex系统。
1)E.coli噬菌体编码调节因子调节mRNA的表达;
2)S.aureus前噬菌体编码免疫蛋白利于抵抗和逃避免疫;
3)E.faecalis前噬菌体编码整合酶蛋白维持溶源性以促进细菌适应性进化等。
[12-16]
细菌-真菌
的互作
BFI
代谢基因介导的 HGT
1)感知真菌释放的代谢产物并促进生长;
2)沿真菌菌丝扩散使鞭毛菌的适应性提高;
3)产生未知性质的信号诱导真菌生长。
1)Ave1和葡萄糖基转移酶编码基因可使V.dahliae的毒力降低,发现44个HGT候选基因,均来自细菌,并且HGT3、HGT5、HGT19、HGT22、HGT42 都可以编码糖基水解酶,参与碳水化合物的代谢;
2)HGT5、HGT8参与Colletotrichum的碳水化合物代谢,HGT1、HGT7参与氨基酸代谢,且HGT9同时参与多种代谢过程等。
[17-18]
细菌-细菌
的互作BBI
毒力因子、胞外多糖、群体感应(QS)信号分子介导的基因重排 1)P.aeruginosa 分泌铁载体、生物表面活性剂和毒素等因子实现菌株间合作共享;
2)QS信号分子AI-2诱导P.aeruginosa感知其他菌株的存在并调整基因表达等。
[18]
非生物因素 抗生素 HGT和基因突变
1)改变抗生素靶标;
2)降解或修饰抗生素药物;
3)减少抗生素药物的摄取或增加外排。
1)靶基因突变、替换:细菌拓扑异构酶突变引起喹诺酮类耐药性,由于获得嵌合青霉素结合蛋白引起内酰胺耐药性;
2)酶修饰:通过细胞壁的重组获得万古霉素耐药性;
3)靶基因保护:QnrA蛋白保护细菌拓扑异构酶免受喹诺酮类药物的抑制活性等。
[19]
温度 特定生理机制适应和耐受低温
1)调节细胞质膜的流动性;
2)节约/产生能源(生产渗透保护剂或兼容溶质、热休克和冷休克蛋白);
3)表达冷活性酶。
1)嗜冷菌的冷适应性进化与CG含量及DNA内在柔韧性有关;
2)E.coli表达热休克蛋白/冷休克蛋白以促进温度适应性等。
[20]
酸碱性 细胞器和代谢相关基因介导的HGT
嗜酸细菌
1)细胞膜阻止质子进入胞内;
2)借助质子泵和消耗质子的酶在胞内中和或排出质子。
嗜碱细菌
1) Na+/H+反向运输系统;
2) 产碱性酶并形成离子屏障;
3) 细胞壁上多聚物的调节作用。
嗜中性细菌
1)泵出质子,产生氨和消耗质子的脱羧反应;
2)改变细胞膜的脂质含量。
1)嗜酸细菌表达钾转移蛋白形成细胞膜内部正电位,puf,puhrbcfrmcyn等HGT基因参与环境适应和代谢活动;
2)Bacillus mannanilyticus产几丁质酶,使其具有较高的热稳定性和最适温度;
3)嗜碱和嗜中性细菌胞内磷酸丝氨酸转氨酶动力学和酶学性质相似且遵循相似的动力学规律等。
[21-23]
非生物因素 重金属 HGT和基因突变
1)单核苷酸多态性(SNP);
2)插入序列(IS);
3)基因缺失/重组/转座;
4)加强酶蛋白的合成;
5)改变酶蛋白的催化活性、结构和功能。
1)C.Metalliduans引入Mer基因,与亲本基因组相比,有8个IS、3个基因缺失和9个SNP,增强了的整体重金属抗性;
2)在Zn2+胁迫下,PseudomonasputidaCzcCBA1发生突变,大量表达CadA1以合成蛋白CadA1,增加酶蛋白的合成;
3)在Cd2+胁迫下,细菌易分泌PN来实现自我保护,更高的PN含量或PN/PS比值可显著增加EPS的疏水性,增强与Cd2+的亲和力;
4)在Zn2+的胁迫下,B.subtilis表达Zur(来自Fur家族)和CzrA(来自ArsR/SmtB家族)对Zn2+进行调控,蛋白Zur调节Zn2+吸收,蛋白CzrA调节Zn2+流出,以便B. subtilis适应Zn2+浓度等。
[24-28]
Table 1 The factors involved in bacterial adaptive evolution
Fig.1 Bacterial adaptive evolution mechanisms under heavy metal stress
[1]   Ruan L W, Lin W Y, Shi H, et al. Characterization of a novel extracellular CuZn superoxide dismutase from Rimicaris exoculata living around deep-sea hydrothermal vent. International Journal of Biological Macromolecules, 2020(163):2346-2356.
[2]   张亚男, 宋娜, 徐丽, 等. CD109的生物学功能及其与乳腺癌的关系. 中华细胞与干细胞杂志(电子版), 2019, 9(3):182-187.
[2]   Zhang Y N, Song N, Xu L, et al. Biological function of CD109 and its relationship with breast cancer. Chinese Journal of Cell and Stem Cell (Electronic Edition), 2019, 9(3):182-187.
[3]   Cheng Y Q, Yang R J, Lyu M Y, et al. IdeR, a DtxR family iron response regulator, controls iron homeostasis, morphological differentiation, secondary metabolism, and the oxidative stress response in Streptomyces avermitilis. Applied and Environmental Microbiology, 2018, 84(22):e01503-e01518.
[4]   Liu Q, Song W Z, Zhou Y G, et al. Phenotypic divergence of thermotolerance: molecular basis and cold adaptive evolution related to intrinsic DNA flexibility of glacier-inhabiting Cryobacterium strains. Environmental Microbiology, 2020, 22(4):1409-1420.
doi: 10.1111/emi.v22.4
[5]   Chandrangsu P, Rensing C, Helmann J D. Metal homeostasis and resistance in bacteria. Nature Reviews Microbiology, 2017, 15(6):338-350.
doi: 10.1038/nrmicro.2017.15 pmid: 28344348
[6]   Presentato A, Piacenza E, Turner R J, et al. Processing of metals and metalloids by actinobacteria: cell resistance mechanisms and synthesis of metal(loid)-based nanostructures. Microorganisms, 2020, 8(12):2027.
doi: 10.3390/microorganisms8122027
[7]   Daisley B A, Monachese M, Trinder M, et al. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes, 2019, 10(3):321-333.
doi: 10.1080/19490976.2018.1526581
[8]   Kalidasan V, Joseph N, Kumar S, et al. Iron and virulence in Stenotrophomonas maltophilia: all we know so far. Frontiers in Cellular and Infection Microbiology, 2018, 8:401.
doi: 10.3389/fcimb.2018.00401 pmid: 30483485
[9]   Zeng F R, Zahoor M, Waseem M, et al. Influence of metal-resistant Staphylococcus aureus strain K1 on the alleviation of chromium stress in wheat. Agronomy, 2020, 10(9):1354.
doi: 10.3390/agronomy10091354
[10]   León-Torres A, Arango E, Castillo E, et al. CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis. Biological Research, 2020, 53(1):6.
doi: 10.1186/s40659-020-00274-7 pmid: 32054527
[11]   Srivastava J, Chandra H, Singh N, et al. Understanding the development of environmental resistance among microbes: a review. CLEAN - Soil, Air, Water, 2016, 44(7):901-908.
doi: 10.1002/clen.v44.7
[12]   Eriksen R S, Krishna S. Defence versus growth in a hostile world: lessons from phage and bacteria. Royal Society Open Science, 2020, 7(9):201118.
doi: 10.1098/rsos.201118
[13]   Hampton H G, Smith L M, Ferguson S, et al. Functional genomics reveals the toxin-antitoxin repertoire and AbiE activity in Serratia. Microbial Genomics, 2020, 6(11):mgen000458.
[14]   Rostøl J T, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host & Microbe, 2019, 25(2):184-194.
[15]   Derry W B. CRISPR: development of a technology and its applications. The FEBS Journal, 2021, 288(2):358-359.
doi: 10.1111/febs.v288.2
[16]   Brovedan M A, Cameranesi M M, Limansky A S, et al. What do we know about plasmids carried by members of the Acinetobacter genus? World Journal of Microbiology & Biotechnology, 2020, 36(8):109.
doi: 10.1007/s11274-020-02890-7
[17]   Shi-Kunne X, van Kooten M, Depotter J R L, et al. The genome of the fungal pathogen Verticillium dahliae reveals extensive bacterial to fungal gene transfer. Genome Biology and Evolution, 2019, 11(3):855-868.
doi: 10.1093/gbe/evz040 pmid: 30799497
[18]   Jaramillo V D, Sukno S A, Thon M R. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer. BMC Genomics, 2015, 16(1):2.
doi: 10.1186/1471-2164-16-2
[19]   Rezzoagli C, Granato E T, Kümmerli R. Harnessing bacterial interactions to manage infections: a review on the opportunistic pathogen Pseudomonas aeruginosa as a case example. Journal of Medical Microbiology, 2020, 69(2):147-161.
doi: 10.1099/jmm.0.001134 pmid: 31961787
[20]   Martinez J L. General principles of antibiotic resistance in bacteria. Drug Discovery Today: Technologies, 2014, 11:33-39.
doi: 10.1016/j.ddtec.2014.02.001 pmid: 24847651
[21]   Li L Z, Liu Z H, Zhang M, et al. Insights into the metabolism and evolution of the genus Acidiphilium, a typical acidophile in acid mine drainage. mSystems, 2020, 5(6):e00867-20.
[22]   Aktuganov G E, Galimzianova N F, Gilvanova E A, et al. Characterization of chitinase produced by the alkaliphilic Bacillus mannanilyticus IB-OR17 B1 strain. Applied Biochemistry and Microbiology, 2018, 54(5):505-511.
doi: 10.1134/S0003683818050022
[23]   Koivulehto M, Battchikova N, Korpela S, et al. Comparison of kinetic and enzymatic properties of intracellular phosphoserine aminotransferases from alkaliphilic and neutralophilic bacteria. Open Chemistry, 2020, 18(1):149-164.
doi: 10.1515/chem-2020-0014
[24]   Millacura F A, Janssen P J, Monsieurs P, et al. Unintentional genomic changes endow Cupriavidus metallidurans with an augmented heavy-metal resistance. Genes, 2018, 9(11):551.
doi: 10.3390/genes9110551
[25]   王伟. 恶臭假单胞菌CD2 P型ATP酶基因cadA1抗Zn2+功能的确定. 武汉: 华中农业大学, 2008.
[25]   Wang W. Determination of Zn2+-resistant function of P-type ATPase gene cadA1 in Pseudomonas putida CD2. Wuhan: Huazhong Agricultural University, 2008.
[26]   Dai M X, Zhou G Q, Ng H Y, et al. Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. Journal of Environmental Management, 2019, 250:109519.
doi: 10.1016/j.jenvman.2019.109519
[27]   Randazzo P, Anba-Mondoloni J, Aubert-Frambourg A, et al. Bacillus subtilis regulators MntR and zur participate in redox cycling, antibiotic sensitivity, and cell wall plasticity. Journal of Bacteriology, 2020, 202(5):e00547-e00519.
[28]   Harvie D R, Andreini C, Cavallaro G, et al. Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a non-effector metal. Molecular Microbiology, 2006, 59(4):1341-1356.
doi: 10.1111/mmi.2006.59.issue-4
[29]   Touchon M, Bernheim A, Rocha E P. Genetic and life-history traits associated with the distribution of prophages in bacteria. The ISME Journal, 2016, 10(11):2744-2754.
doi: 10.1038/ismej.2016.47
[30]   Vandecraen J, Monsieurs P, Mergeay M, et al. Zinc-induced transposition of insertion sequence elements contributes to increased adaptability of Cupriavidus metallidurans. Frontiers in Microbiology, 2016, 7:359.
doi: 10.3389/fmicb.2016.00359 pmid: 27047473
[31]   Zhang S H, Yang G L, Hou S G, et al. Analysis of heavy metal-related indices in the Eboling permafrost on the Tibetan Plateau. CATENA, 2021, 196:104907.
doi: 10.1016/j.catena.2020.104907
[32]   王敏. 嗜冷微生物对Cu2+胁迫的应答及其代谢组学研究. 哈尔滨: 哈尔滨工业大学, 2012.
[32]   Wang M. Stress responses and metabolomics under Cu2+ in psychrophilic microorganism. Harbin: Harbin Institute of Technology, 2012.
[33]   Alfano M, Cavazza C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Science, 2020, 29(5):1071-1089.
doi: 10.1002/pro.v29.5
[34]   Chirgadze Y N, Boshkova E A, Battaile K P, et al. Crystal structure of Staphylococcus aureus Zn-glyoxalase I: new subfamily of glyoxalase I family. Journal of Biomolecular Structure & Dynamics, 2018, 36(2):376-386.
[35]   Kim J, Choi D, Cha S Y, et al. Zinc-mediated reversible multimerization of Hsp31 enhances the activity of holding chaperone. Journal of Molecular Biology, 2018, 430(12):1760-1772.
doi: 10.1016/j.jmb.2018.04.029
[36]   Raytapadar S, Datta R, Paul A K. Effects of some heavy metals on growth, pigment and antibiotic production by Streptomyces galbus. Acta Microbiologica et Immunologica Hungarica, 1995, 42(2):171-177.
pmid: 7551710
[37]   Remenár M, Karelová E, Harichová J, et al. Actinobacteria occurrence and their metabolic characteristics in the nickel-contaminated soil sample. Biologia, 2014, 69(11):1453-1463.
doi: 10.2478/s11756-014-0451-z
[38]   Caldeira J B, Chung A P, Morais P V, et al. Relevance of FeoAB system in Rhodanobacter sp. B2A1Ga4 resistance to heavy metals, aluminium, gallium, and indium. Applied Microbiology and Biotechnology, 2021, 105(8):3301-3314.
doi: 10.1007/s00253-021-11254-6 pmid: 33791837
[39]   Manley O M, Myers P D, Toney D J, et al. Evaluation of the regulatory model for Ni2+ sensing by Nur from Streptomyces coelicolor. Journal of Inorganic Biochemistry, 2020, 203:110859.
doi: 10.1016/j.jinorgbio.2019.110859
[40]   Baksh K A, Pichugin D, Prosser R S, et al. Allosteric regulation of the nickel-responsive NikR transcription factor from Helicobacter pylori. Journal of Biological Chemistry, 2021, 296:100069.
doi: 10.1074/jbc.RA120.015459
[41]   Lee C W, Giedroc D P. 1H, 13C, and 15N resonance assignments of NmtR, a Ni(II)/Co(II) metalloregulatory protein of Mycobacterium tuberculosis. Biomolecular NMR Assignments, 2013, 7(2):145-148.
doi: 10.1007/s12104-012-9397-7
[42]   Higgins K, Surette V, Swanson G, et al. Characterization of KmtR from Mycobacterium tuberculosis. Abstracts of Papers of the American Chemical Society, 2017, 254.
[43]   Bafana A, Khan F, Suguna K. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1. BioMetals, 2017, 30(5):809-819.
doi: 10.1007/s10534-017-0050-x pmid: 28894951
[44]   Kang W, Zheng J, Bao J G, et al. Characterization of the copper resistance mechanism and bioremediation potential of an Acinetobacter calcoaceticus strain isolated from copper mine sludge. Environmental Science and Pollution Research International, 2020, 27(8):7922-7933.
doi: 10.1007/s11356-019-07303-3 pmid: 31893366
[1] LI Jin-hua,BAI Yu-fan,MA Chun-lan,JI Xiu-ling,WEI Yun-lin. Research Progress on Temperature Adaptation of Bacteriophage[J]. China Biotechnology, 2022, 42(1/2): 139-145.
[2] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[3] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[4] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[5] YUAN Bo-xin,WU Hao,YAN Chun-xiao,LU Juan-e,WEI Zhen-ping,QIAO Jian-jun,RUAN Hai-hua. Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus[J]. China Biotechnology, 2021, 41(7): 81-90.
[6] ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria[J]. China Biotechnology, 2021, 41(7): 91-98.
[7] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[8] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[9] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[10] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[11] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[12] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[13] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[14] FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification[J]. China Biotechnology, 2020, 40(6): 84-92.
[15] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.