Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (7): 81-90    DOI: 10.13523/j.cb.2102035
    
Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus
YUAN Bo-xin1,WU Hao1,YAN Chun-xiao1,LU Juan-e2,WEI Zhen-ping1,QIAO Jian-jun1,RUAN Hai-hua2,3,**()
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Tianjin University of Commerce, Tianjin 300134, China
3 Tianjin Key Laboratory of Food Science and Biotechnology, Tianjin 300134, China
Download: HTML   PDF(1549KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The nucleus is the control center of cell genetics and metabolism, regulating the cell’s responses to the outside environment, metabolism, growth and differentiation and other cellular activities. Many studies have shown that in the process of bacterial infection into host cells, some effector proteins of pathogenic bacteria enter the nucleus of the host cells, affecting gene transcription, RNA splicing, DNA repair, chromatin remodeling, etc. These nucleus-targeting pathogenic effector proteins are called nucleomodulins. This review summarized the means of these nuclear regulatory proteins entering the host nucleus, aftersecreted by pathogenic bacteria. Importantly, the functions of these nucleomodulins regulating the activities of host cells were elucidated. It provides a theoretical basis to further explore the infection and pathogenic mechanisms of intracellular bacteria on host cells.



Key wordsNucleomodulins      Pathogenic bacteria      Host cell nucleus     
Received: 28 February 2021      Published: 03 August 2021
ZTFLH:  Q819  
Corresponding Authors: Hai-hua RUAN     E-mail: ruanhaihua@tjcu.edu.cn
Cite this article:

YUAN Bo-xin,WU Hao,YAN Chun-xiao,LU Juan-e,WEI Zhen-ping,QIAO Jian-jun,RUAN Hai-hua. Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus. China Biotechnology, 2021, 41(7): 81-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2102035     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I7/81

Fig.1 Mechanism of Importin α/ Importin β mediated protein targeting the host nucleus
Nucleomodulins Organism Function Reference
TRP32 Ehrlichia chaffeensis Binds to the G-enrichment motif of host DNA and regulates transcription of related genes [11-12]
OspF Shigella Inhibits the transcription of immune factors;alters chromatin structure [13, 37]
YopM Yersinia Affects RSK1 levels and inhibits transcription of immune factors, such as IL-10 [15-17, 63]
PPE2 Mycobacterium tuberculosis Acts on macrophages and inhibits the production of NO [20]
CBU1976 Coxiella burnetii Not clear [25]
CBU1524 Coxiella burnetii Inhibits the activation of Caspase-7 and interferes with the process of apoptosis [31]
CBU1314 Coxiella burnetii Interferes with the transcription of host genes [32]
TRP47 Ehrlichia chaffeensis Binds to host GC enrichment motif and regulating transcription of essential genes [44]
TRP120 Ehrlichia chaffeensis Binds to host GC enrichment motif and activates host gene transcription [44-45]
OrfX Listeria monocytogenes Inhibites the expression of RYBP, and decreases the p53 ubiquitination mediated by MDM2 [46]
Nucleomodulins Organism Function Reference
LntA Listeria monocytogenes Targets host chromatin repressor BAHD1 and inhibited interferon gene expression [47, 64]
IpaH9.8 Shigella Interacts with U2AF35 to inhibit the transcription of immune factors [50-51]
SspH1 salmonella typhimurium Inhibits the production of the pro-inflammatory cytokine IL-8 [52]
SINC Chlamydia psittaci Interacts with nucleoporin, nucleofibrillar protein and nucleoendrimal protein [54]
AnkA Anaplasma phagocytophilum Binds to AT-rich motifs and inhibits the expression of CYBB [60-61]
RomA Legionella pneumophila Leads to methylation of histone H3 Lys 14 [60, 65]
Rv3423 Mycobacterium tuberculosis Histone acetyltrans ferases target either H3K9 or H3K14 [66]
SnpL Legionella pneumophila Interacts with SUPT5H and affects RNA polymerase II mediated transcription elongation [62]
Rv1988 Mycobacterium tuberculosis Interacts with host chromatin and affects histone methylation [67]
Rv2966c Mycobacterium tuberculosis Interacts with host chromatin and affects gene expression [68]
LegAS4 Legionella pneumophila Makes H3K4 methylation and up-regulate the transcription of heterosomal rDNA [69, 70]
BtSET bacillus thuringiensis Methylates of H3 Lys 14 and activates ribosomal DNA transcription [70]
AnkX Legionella pneumophila Interacts with PLEKHN1 and is involved in the inflammatory response [71]
AnkH Legionella pneumophila Interacts with LARP7 and affects RNA polymerase II mediated transcription elongation [72]
SP-STP Streptococcus pyogenes Phosphatase, which causes the apoptosis of infected cells [73]
NUE Chlamydia trachomatis Targets host histones modifies chromatin structure [74]
Table 1 A list of representative nucleomodulins and their main functions
Fig.2 Regulation mechanism of Shigella effector protein OspF
Fig.3 Regulatory mechanism of Listeria monocytogenes effector protein LntA
Fig. 4 Regulatory mechanism of Anaplasma phagocytophilum effector protein AnkA
[1]   Ye B J, Zhou C, Guo H T, et al. Effects of BTK signalling in pathogenic microorganism infections. Journal of Cellular and Molecular Medicine, 2019, 23(10):6522-6529.
doi: 10.1111/jcmm.v23.10
[2]   Colonne P M, Winchell C G, Voth D E. Hijacking host cell highways: manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens. Frontiers in Cellular and Infection Microbiology, 2016, 6:107-115.
[3]   Bomberger J M, Ye S Y, Maceachran D P, et al. A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system. PLoS Pathogens, 2011, 7(3):e1001325.
doi: 10.1371/journal.ppat.1001325
[4]   Horenkamp F A, Mukherjee S, Alix E, et al. Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic (Copenhagen, Denmark), 2014, 15(5):488-499.
doi: 10.1111/tra.12158
[5]   Wälde S, Kehlenbach R H. The part and the whole: functions of nucleoporins in nucleocytoplasmic transport. Trends in Cell Biology, 2010, 20(8):461-469.
doi: 10.1016/j.tcb.2010.05.001
[6]   Miyamoto Y, Yamada K, Yoneda Y. Importin α: a key molecule in nuclear transport and non-transport functions. Journal of Biochemistry, 2016, 160(2):69-75.
doi: 10.1093/jb/mvw036 pmid: 27289017
[7]   Miyamoto Y, Boag P R, Hime G R, et al. Regulated nucleocytoplasmic transport during gametogenesis. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, 1819(6):616-630.
doi: 10.1016/j.bbagrm.2012.01.015
[8]   Lowe A R, Tang J H, Yassif J, et al. Importin-beta modulates the permeability of the nuclear pore complex in a Ran-dependent manner. Elife, 2015, 4:e04052.
doi: 10.7554/eLife.04052
[9]   Bannister A J, Kouzarides T. Regulation of chromatin by histone modifications. Cell Research, 2011, 21(3):381-395.
doi: 10.1038/cr.2011.22 pmid: 21321607
[10]   Bierne H, Cossart P. When bacteria target the nucleus: the emerging family of nucleomodulins. Cellular Microbiology, 2012, 14(5):622-633.
doi: 10.1111/cmi.2012.14.issue-5
[11]   Farris T R, Dunphy P S, Zhu B, et al. Ehrlichia chaffeensis TRP32 is a nucleomodulin that directly regulates expression of host genes governing differentiation and proliferation. Infection and Immunity, 2016, 84(11):3182-3194.
doi: 10.1128/IAI.00657-16
[12]   Farris T R, Zhu B, Wang J Y, et al. Ehrlichia chaffeensis TRP32 nucleomodulin function and localization is regulated by NEDD4L-mediated ubiquitination. Frontiers in Cellular and Infection Microbiology, 2017, 7:534.
doi: 10.3389/fcimb.2017.00534
[13]   Jo K, Kim E J, Yu H J, et al. Host cell nuclear localization of Shigella flexneri effector OspF is facilitated by SUMOylation. Journal of Microbiology and Biotechnology, 2017, 27(3):610-615.
doi: 10.4014/jmb.1611.11066
[14]   Navarro L, Alto N M, Dixon J E. Functions of the Yersinia effector proteins in inhibiting host immune responses. Current Opinion in Microbiology, 2005, 8(1):21-27.
pmid: 15694853
[15]   Benabdillah R, Jaime Mota L, Lützelschwab S, et al. Identification of a nuclear targeting signal in YopM from Yersinia spp. Microbial Pathogenesis, 2004, 36(5):247-261.
pmid: 15043860
[16]   Berneking L, Schnapp M, Rumm A, et al. Immunosuppressive Yersinia effector YopM binds DEAD box helicase DDX3 to control ribosomal S6 kinase in the nucleus of host cells. PLoS Pathogens, 2016, 12(6):e1005660.
doi: 10.1371/journal.ppat.1005660
[17]   Kerschen E J, Cohen D A, Kaplan A M, et al. The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells. Infection and Immunity, 2004, 72(8):4589-4602.
pmid: 15271919
[18]   Fishbein S, van Wyk N, Warren R M, et al. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Molecular Microbiology, 2015, 96(5):901-916.
doi: 10.1111/mmi.12981 pmid: 25727695
[19]   Ahmed A, Das A, Mukhopadhyay S. Immunoregulatory functions and expression patterns of PE/PPE family members: Roles in pathogenicity and impact on anti-tuberculosis vaccine and drug design. IUBMB Life, 2015, 67(6):414-427.
doi: 10.1002/iub.1387 pmid: 26104967
[20]   Bhat K H, Srivastava S, Kotturu S K, et al. The PPE2 protein of Mycobacterium tuberculosis translocates to host nucleus and inhibits nitric oxide production. Scientific Reports, 2017, 7:39706.
doi: 10.1038/srep39706
[21]   Bhat K H, Das A, Srikantam A, et al. PPE2 protein of Mycobacterium tuberculosis may inhibit nitric oxide in activated macrophages. Annals of the New York Academy of Sciences, 2013, 1283:97-101.
doi: 10.1111/nyas.12070
[22]   Mukhopadhyay S, Ghosh S. Mycobacterium tuberculosis: what is the role of PPE2 during infection. Future Microbiology, 2017, 12(6):457-460.
doi: 10.2217/fmb-2017-0038
[23]   Baca O G, Paretsky D. Q fever and Coxiella burnetii: a model for host-parasite interactions. Microbiological Reviews, 1983, 47(2):127-149.
pmid: 6348504
[24]   Segal G, Feldman M, Zusman T. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiology Reviews, 2005, 29(1):65-81.
pmid: 15652976
[25]   Carey K L, Newton H J, Lührmann A, et al. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathogens, 2011, 7(5):e1002056.
doi: 10.1371/journal.ppat.1002056
[26]   Chen C, Banga S, Mertens K, et al. Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. PNAS, 2010, 107(50):21755-21760.
doi: 10.1073/pnas.1010485107 pmid: 21098666
[27]   Weber M M, Chen C, Rowin K, et al. Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. Journal of Bacteriology, 2013, 195(17):3914-3924.
pmid: 23813730
[28]   Klingenbeck L, Eckart R A, Berens C, et al. The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cellular Microbiology, 2013, 15(4):675-687.
doi: 10.1111/cmi.12066 pmid: 23126667
[29]   Bisle S, Klingenbeck L, Borges V, et al. The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence, 2016, 7(4):400-412.
doi: 10.1080/21505594.2016.1139280
[30]   Eckart R A, Bisle S, Schulze-Luehrmann J, et al. Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infection and Immunity, 2014, 82(7):2763-2771.
doi: 10.1128/IAI.01204-13 pmid: 24733095
[31]   Schäfer W, Eckart R A, Schmid B, et al. Nuclear trafficking of the anti-apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and importin-α1. Cellular Microbiology, 2017, 19(1):e12634.
doi: 10.1111/cmi.12634
[32]   Weber M M, Faris R, McLachlan J, et al. Modulation of the host transcriptome by Coxiella burnetii nuclear effector Cbu1314. Microbes and Infection, 2016, 18(5):336-345.
doi: 10.1016/j.micinf.2016.01.003 pmid: 26827929
[33]   Cossart P, Sansonetti P J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science (New York, N Y), 2004, 304(5668):242-248.
doi: 10.1126/science.1090124
[34]   Venkatesan M M, Goldberg M B, Rose D J, et al. Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infection and Immunity, 2001, 69(5):3271-3285.
pmid: 11292750
[35]   Zurawski D V, Mitsuhata C, Mumy K L, et al. OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence. Infection and Immunity, 2006, 74(10):5964-5976.
pmid: 16988276
[36]   Zurawski D V, Mumy K L, Faherty C S, et al. Shigella flexneri type III secretion system effectors OspB and OspF target the nucleus to downregulate the host inflammatory response via interactions with retinoblastoma protein. Molecular Microbiology, 2009, 71(2):350-368.
doi: 10.1111/j.1365-2958.2008.06524.x pmid: 19017275
[37]   Zhao H M, Zhang Y, Wu P J, et al. The Shigella type three secretion system effector OspF invades host nucleus by binding host importin α1. World Journal of Microbiology and Biotechnology, 2019, 35(5):71-81.
doi: 10.1007/s11274-019-2635-8
[38]   Newton I L G, Woyke T, Auchtung T A, et al. The Calyptogena magnifica chemoautotrophic symbiont genome. Science, 2007, 315(5814):998-1000.
pmid: 17303757
[39]   Dunphy P S, Luo T, McBride J W. Ehrlichia moonlighting effectors and interkingdom interactions with the mononuclear phagocyte. Microbes and Infection, 2013, 15(14-15):1005-1016.
doi: 10.1016/j.micinf.2013.09.011 pmid: 24141087
[40]   Zhu B, Kuriakose J A, Luo T, et al. Ehrlichia chaffeensis TRP120 binds a G+C-rich motif in host cell DNA and exhibits eukaryotic transcriptional activator function. Infection and Immunity, 2011, 79(11):4370-4381.
doi: 10.1128/IAI.05422-11
[41]   Saijo Y, Schulze-Lefert P. Manipulation of the eukaryotic transcriptional machinery by bacterial pathogens. Cell Host & Microbe, 2008, 4(2):96-99.
[42]   Lukas J, Mazna P, Valenta T, et al. Dazap2 modulates transcription driven by the Wnt effector TCF-4. Nucleic Acids Research, 2009, 37(9):3007-3020.
doi: 10.1093/nar/gkp179 pmid: 19304756
[43]   Luo T, McBride J W. Ehrlichia chaffeensis TRP32 interacts with host cell targets that influence intracellular survival. Infection and Immunity, 2012, 80(7):2297-2306.
doi: 10.1128/IAI.00154-12
[44]   Kibler C E, Milligan S L, Farris T R, et al. Ehrlichia chaffeensis TRP47 enters the nucleus via a MYND-binding domain-dependent mechanism and predominantly binds enhancers of host genes associated with signal transduction, cytoskeletal organization, and immune response. PLoS One, 2018, 13(11):e0205983.
doi: 10.1371/journal.pone.0205983
[45]   Klema V J, Sepuru K M, Füllbrunn N, et al. Ehrlichia chaffeensis TRP120 nucleomodulin binds DNA with disordered tandem repeat domain. PLoS One, 2018, 13(4):e0194891.
doi: 10.1371/journal.pone.0194891
[46]   Prokop A, Gouin E, Villiers V, et al. OrfX, a nucleomodulin required for Listeria monocytogenes virulence. MBio, 2017, 8(5):e01550.
[47]   Lebreton A, Job V, Ragon M, et al. Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA. MBio, 2014, 5(1):e00775-e00713.
[48]   Bierne H, Tham T N, Batsche E, et al. Human BAHD1 promotes heterochromatic gene silencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(33):13826-13831.
[49]   Lebreton A, Cossart P, Bierne H. Bacteria tune interferon responses by playing with chromatin. Virulence, 2012, 3(1):87-91.
doi: 10.4161/viru.3.1.18531 pmid: 22286704
[50]   Toyotome T, Suzuki T, Kuwae A, et al. Shigella protein IpaH(9.8) is secreted from bacteria within mammalian cells and transported to the nucleus. The Journal of Biological Chemistry, 2001, 276(34):32071-32079.
doi: 10.1074/jbc.M101882200
[51]   Okuda J, Toyotome T, Kataoka N, et al. Shigella effector IpaH9.8 binds to a splicing factor U2AF35 to modulate host immune responses. Biochemical and Biophysical Research Communications, 2005, 333(2):531-539.
pmid: 15950937
[52]   Haraga A, Miller S I. A Salmonella enterica serovar typhimurium translocated leucine-rich repeat effector protein inhibits NF-kappa B-dependent gene expression. Infection and Immunity, 2003, 71(7):4052-4058.
doi: 10.1128/IAI.71.7.4052-4058.2003
[53]   Vivoda M, Cirković I, Aleksić D, et al. Biology and intracellular life of chlamydia. Medicinski Pregled, 2011, 64(11-12):561-564.
pmid: 22369000
[54]   Mojica S A, Hovis K M, Frieman M B, et al. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors. Molecular Biology of the Cell, 2015, 26(10):1918-1934.
doi: 10.1091/mbc.E14-11-1530
[55]   Hänsch S, Spona D, Murra G, et al. Chlamydia-induced curvature of the host-cell plasma membrane is required for infection. PNAS, 2020, 117(5):2634-2644.
doi: 10.1073/pnas.1911528117
[56]   Woldehiwet Z. The natural history of Anaplasma phagocytophilum. Veterinary Parasitology, 2010, 167(2-4):108-122.
doi: 10.1016/j.vetpar.2009.09.013 pmid: 19811878
[57]   Rikihisa Y. Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clinical Microbiology Reviews, 2011, 24(3):469-489.
doi: 10.1128/CMR.00064-10 pmid: 21734244
[58]   Garyu J W A, Choi K S, Grab D J, et al. Defective phagocytosis in Anaplasma phagocytophilum-infected neutrophils. Infection and Immunity, 2005, 73(2):1187-1190.
doi: 10.1128/IAI.73.2.1187-1190.2005
[59]   Rennoll-Bankert K E, Garcia-Garcia J C, Sinclair S H, et al. Chromatin-bound bacterial effector ankyrin a recruits histone deacetylase 1 and modifies host gene expression. Cellular Microbiology, 2015, 17(11):1640-1652.
doi: 10.1111/cmi.12461 pmid: 25996657
[60]   Garcia-Garcia J C, Rennoll-Bankert K E, Pelly S, et al. Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infection and Immunity, 2009, 77(6):2385-2391.
doi: 10.1128/IAI.00023-09 pmid: 19307214
[61]   Dumler J S, Sinclair S H, Pappas-Brown V, et al. Genome-wide Anaplasma phagocytophilum AnkA-DNA interactions are enriched in intergenic regions and gene promoters and correlate with infection-induced differential gene expression. Frontiers in Cellular and Infection Microbiology, 2016, 6:97.
[62]   Schuelein R, Spencer H, Dagley L F, et al. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL. Cellular Microbiology, 2018, 20(9):e12852.
doi: 10.1111/cmi.v20.9
[63]   Wei C W, Wang Y, Du Z M, et al. The Yersinia type III secretion effector YopM is an E3 ubiquitin ligase that induced necrotic cell death by targeting NLRP3. Cell Death & Disease, 2016, 7(12):e2519.
[64]   Lebreton A, Lakisic G, Job V, et al. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science, 2011, 331(6022):1319-1321.
doi: 10.1126/science.1200120 pmid: 21252314
[65]   Rolando M, Sanulli S, Rusniok C, et al. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host & Microbe, 2013, 13(4):395-405.
[66]   Jose L, Ramachandran R, Bhagavat R, et al. Hypothetical protein Rv3423.1 of Mycobacterium tuberculosis is a histone acetyltransferase. The FEBS Journal, 2016, 283(2):265-281.
doi: 10.1111/febs.13566
[67]   Yaseen I, Kaur P, Nandicoori V K, et al. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nature Communications, 2015, 6:8922.
doi: 10.1038/ncomms9922
[68]   Sharma G, Upadhyay S, Srilalitha M, et al. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Research, 2015, 43(8):3922-3937.
doi: 10.1093/nar/gkv261
[69]   Son J, Jo C H, Murugan R N, et al. Crystal structure of Legionella pneumophila type IV secretion system effector LegAS4. Biochemical and Biophysical Research Communications, 2015, 465(4):817-824.
doi: 10.1016/j.bbrc.2015.08.094
[70]   Li T, Lu Q H, Wang G L, et al. SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Reports, 2013, 14(8):733-740.
doi: 10.1038/embor.2013.86
[71]   Yu X B, Noll R R, Romero Dueñas B P, et al. Legionella effector AnkX interacts with host nuclear protein PLEKHN1. BMC Microbiology, 2018, 18(1):5-14.
doi: 10.1186/s12866-017-1147-7
[72]   von Dwingelo J, Chung I Y W, Price C T, et al. Interaction of the ankyrin H core effector of Legionella with the host LARP7 component of the 7SK snRNP complex. mBio, 2019, 10(4):e01942.
[73]   Agarwal S, Agarwal S, Jin H, et al. Serine/threonine phosphatase (SP-STP), secreted from Streptococcus pyogenes, is a pro-apoptotic protein. Journal of Biological Chemistry, 2012, 287(12):9147-9167.
doi: 10.1074/jbc.M111.316554
[74]   Pennini M E, Perrinet S, Dautry-Varsat A, et al. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathogens, 2010, 6(7):e1000995.
doi: 10.1371/journal.ppat.1000995
[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[3] GAO Xin, WANG Jing-Lin. The Application of Gene Microarray in Detecting Pathogenic Bacteria[J]. China Biotechnology, 2010, 30(02): 100-104.