Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (10): 33-41    DOI: 10.13523/j.cb.2105047
    
Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique
ZHU Xiao-jing1,WANG Rui1,ZHANG Xin-xin1,JIN Jia-xin1,LU Wen-long1,DING Da-shun1,HUO Cui-mei2,LI Qing-mei3,SUN Ai-jun1,**,ZHUANG Guo-qing1,**()
1 International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
2 Jining City Animal Husbandry Development Center, Jining 272004, China
3 Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
Download: HTML   PDF(1186KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Marek’s disease virus (MDV) is an alphaherpesvirus and is classified into three serotypes: MDV serotype 1 (MDV-1) which includes the pathogenic strains and their derivatives; MDV serotype 2 (MDV-2) which consists of non-oncogenic viruses; and MDV serotype 3 (MDV-3), which is also referred to as turkey herpesvirus 1 (HVT). All three MDV serotypes have been used as vaccines. CVI988 is a cell culture passage attenuated MDV-1 virus and the gold standard among MD vaccines. CVI988 could be used as a viral vector to express exogenous gene. MDV and Newcastle disease virus (NDV) co-infection in chickens is very popular in the field, but there are few candidates of recombinant vaccines to prevent the infection of both viruses at the same time. Methods: In this study, CVI988 expressing F gene was constructed by the bacterial artificial chromosome (BAC) technology and packaged into recombinant virus. After it was amplified by PCR, the F gene together with Kana gene fragment was integrated into CVI988 BAC by homologous recombination to generate CVI988 BAC-F. Subsequently, CVI988 BAC-F was transfected into chicken embryo fibroblast (CEF) cells by calcium phosphate to rescue recombinant virus, which was confirmed by Western blotting and indirect immunofluorescence assay (IFA) assays. Results: The results of virus growth curve and plaque area measurement showed that the insertion of F gene did not affect virus proliferation in vitro. Conclusion: We successfully constructed a recombinant CVI988 BAC virus, which provides a basis for development of novel vaccines to prevent and control co-infection of NDV and MDV.



Key wordsBacterial artificial chromosome      Newcastle disease virus      F genes      Marek’s disease virus      Recombinant vaccines     
Received: 25 May 2021      Published: 08 November 2021
ZTFLH:  Q819  
Corresponding Authors: Ai-jun SUN,Guo-qing ZHUANG     E-mail: gqzhuang2008@163.com
Cite this article:

ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique. China Biotechnology, 2021, 41(10): 33-41.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2105047     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I10/33

名称 引物基因序列(5'-3')
P1-F CGATATACATTTGCTTATTTCGCTGTCCACCCATAACCGAGAGTTGACATTGATTATTG
P1-R CATCTATACTATTATAACATACTTGTATCATTAAGTTCCATACCATAGAGCCCACCGCATC
P2-F GTAGATTCTTCTGGTTCG
P2-R CTGTGAAAATTTAT CCC
Table 1 PCR primer sequences
名称 引物基因序列(5'-3')
OVO-F CACTGCCACTGGGCTCTGT
OVO-R GCAATGGCAATAAACCTCCAA
ICP4-F TTATTGCCCCGTACTCACCG
ICP4-R CATTTAAAGTCTTTCATGCCAAAC
Table 2 qPCR primer sequences
Fig.1 Results of PCR amplification of F-Kana gene M: DNA Marker; 1: Blank control; 2: Fragment of F-Kana gene
Fig.2 PCR and electroporation identification M: DNA Marker; 1: Blank control; 2: CVI988 BAC; 3~5: Bacterial colonies
Fig.3 PCR identification of removing of Kana gene M: DNA Marker; 1: Positive bacterial colony
Fig.4 Expression identification of recombinant virus CVI988 BAC-F (A) Western blot analysis of recombinant protein expression. a: MDV gB McAb for detection of recombinant CVI988 BAC-F virus, M: protein Marker; 1: CEF blank control; 2: CVI988 BAC-F; 3: CVI988 BAC. b: Detection of recombinant CVI988 BAC-F virus by chicken NDV polyantiserum, M: protein Marker; 1: Recombinant CVI988 BAC-F virus; 2: Live Newcastle disease vaccine (LaSota strain) (B) Immunofluorescence analysis of CEF cells infected with CVI988 BAC-F. a, b, e, f: Negative control, c, d, g, h: CVI988 BAC-F. a, b, c, d plaque detection of CVI988 BAC-F by NDV polyantiserum, e, f, g, h plaque detection of CVI988 BAC-F by gB antibody; a, c, e, g Plaque detection by white light
Fig.5 Comparison of in vitro proliferation of recombinant virus CVI988 BAC-F (A) Growth curve of CVI988 BAC-F in vitro (B) Plaques size assay (C) Random selection of partial viral plaques. a, b, c CVI988 BAC virus infected group; d, e, f CVI988 BAC-F virus infected group
[1]   孙爱军, 张改平, 庄国庆. meqlorf9双基因缺失显著降低超强马立克氏病病毒的复制能力. 科学通报, 2020, 65(Z1): 167-173.
[1]   Sun A J, Zhang G P, Zhuang G Q. Meq and lorf9 deletion significantly reduced capacity of replication of very virulent Marek’s disease virus. Chinese Science Bulletin, 2020, 65(Z1): 167-173.
[2]   崔治中, 苏帅, 罗俊, 等. 鸡马立克病毒的研究进展. 微生物学通报, 2019, 46(7): 1812-1826.
[2]   Cui Z Z, SU S, Luo J, et al. Progress in Marek’s disease virus. Microbiology China, 2019, 46(7): 1812-1826.
[3]   崔雪志, 韩薇, 秦立廷, 等. 一例肉种鸡马立克氏病的诊断. 中国家禽, 2017, 39(2): 71-73.
[3]   Cui X Z, Han W, Qin L T, et al. Diagnosis of a case of Marek’s disease in broiler breeder. China Poultry, 2017, 39(2): 71-73.
[4]   Baigent S J, Smith L P, Nair V K, et al. Vaccinal control of Marek’s disease: current challenges, and future strategies to maximize protection. Veterinary Immunology and Immunopathology, 2006, 112(1-2): 78-86.
pmid: 16682084
[5]   Calnek B W, Schat K A, Peckham M C, et al. Field trials with a bivalent vaccine (HVT and SB-1) against Marek’s disease. Avian Diseases, 1983, 27(3): 844-849.
pmid: 6314982
[6]   Lee L F. 马立克氏病新一代疫苗的研究与应用. 中国家禽, 2010, 32(19): 37-40.
[6]   Lee L F. Research and application of new generation vaccine against Marek’s disease. Chinese Poultry, 2010, 32(19): 37-40.
[7]   袁金城, 卢存义, 刘玉云, 等. 鸡马立克氏病1型(CVI988/rispens)活疫苗的研制. 中国兽药杂志, 2001, 35(3): 4-7.
[7]   Yuan J C, Lu C Y, Liu Y Y, et al. Development of Marek’s disease live vaccine (CVI988/rispen). Chinese Journal of Veterinary Drug, 2001, 35(3): 4-7.
[8]   de Boer G F, Groenendal J E, Boerrigter H M, et al. Protective efficacy of Marek’s disease virus (MDV) CVI-988 CEF65 clone C against challenge infection with three very virulent MDV strains. Avian Diseases, 1986, 30(2): 276-283.
pmid: 3015113
[9]   Li K, Liu Y Z, Liu C J, et al. Recombinant Marek’s disease virus type 1 provides full protection against very virulent Marek’s and infectious bursal disease viruses in chickens. Scientific Reports, 2016, 6: 39263.
doi: 10.1038/srep39263
[10]   Dimitrov K M, Afonso C L, Yu Q Z, et al. Newcastle disease vaccines-a solved problem or a continuous challenge. Veterinary Microbiology, 2017, 206: 126-136.
doi: S0378-1135(16)30804-5 pmid: 28024856
[11]   Diel D G, Susta L, Cardenas Garcia S, et al. Complete genome and clinicopathological characterization of a virulent Newcastle disease virus isolate from South America. Journal of Clinical Microbiology, 2012, 50(2): 378-387.
doi: 10.1128/JCM.06018-11
[12]   Cardenas Garcia S, Navarro Lopez R, Morales R, et al. Molecular epidemiology of Newcastle disease in Mexico and the potential spillover of viruses from poultry into wild bird species. Applied and Environmental Microbiology, 2013, 79(16): 4985-4992.
doi: 10.1128/AEM.00993-13
[13]   Alders R G. Making Newcastle disease vaccines available at village level. Veterinary Record, 2014, 174(20): 502-503.
doi: 10.1136/vr.g3209 pmid: 24832887
[14]   Susta L, Jones M E B, Cattoli G, et al. Pathologic characterization of genotypes XIV and XVII Newcastle disease viruses and efficacy of classical vaccination on specific pathogen-free birds. Veterinary Pathology, 2015, 52(1): 120-131.
doi: 10.1177/0300985814521247 pmid: 24510948
[15]   Boursnell M E, Green P F, Campbell J I, et al. Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. The Journal of General Virology, 1990, 71(Pt 3): 621-628.
doi: 10.1099/0022-1317-71-3-621
[16]   Morgan R W, Gelb J, Schreurs C S, et al. Protection of chickens from Newcastle and Marek’s diseases with a recombinant herpesvirus of turkeys vaccine expressing the Newcastle disease virus fusion protein. Avian Diseases, 1992, 36(4): 858-870.
pmid: 1485872
[17]   Palya V, Kiss I, Tatár-Kis T, et al. Advancement in vaccination against Newcastle disease: recombinant HVT NDV provides high clinical protection and reduces challenge virus shedding with the absence of vaccine reactions. Avian Diseases, 2012, 56(2): 282-287.
pmid: 22856183
[18]   Palya V, Tatár-Kis T, Mató T, et al. Onset and long-term duration of immunity provided by a single vaccination with a Turkey herpesvirus vector ND vaccine in commercial layers. Veterinary Immunology and Immunopathology, 2014, 158(1-2): 105-115.
doi: 10.1016/j.vetimm.2013.11.008
[19]   Bertran K, Lee D H, Criado M F, et al. Maternal antibody inhibition of recombinant Newcastle disease virus vectored vaccine in a primary or booster avian influenza vaccination program of broiler chickens. Vaccine, 2018, 36(43): 6361-6372.
doi: S0264-410X(18)31264-7 pmid: 30241684
[20]   Sonoda K, Sakaguchi M, Okamura H, et al. Development of an effective polyvalent vaccine against both Marek’s and Newcastle diseases based on recombinant Marek’s disease virus type 1 in commercial chickens with maternal antibodies. Journal of Virology, 2000, 74(7): 3217-3226.
pmid: 10708438
[21]   le Gros F X, Dancer A, Giacomini C, et al. Field efficacy trial of a novel HVT-IBD vector vaccine for 1-day-old broilers. Vaccine, 2009, 27(4): 592-596.
doi: 10.1016/j.vaccine.2008.10.094 pmid: 19041678
[22]   Chi X J, Wang X J, Wang C Y, et al. In vitro and in vivo broad antiviral activity of peptides homologous to fusion glycoproteins of Newcastle disease virus and Marek’s disease virus. Journal of Virological Methods, 2014, 199: 11-16.
doi: 10.1016/j.jviromet.2013.12.022
[23]   Lemiere S, Fernández R, Pritchard N, et al. Concomitant Turkey herpesvirus-infectious bursal disease vector vaccine and oil-adjuvanted inactivated Newcastle disease vaccine administration: consequences for vaccine intake and protection. Avian Diseases, 2011, 55(4): 642-649.
doi: 10.1637/9751-040511-ResNote.1
[24]   Ferreira H L, Reilley A M, Goldenberg D, et al. Protection conferred by commercial NDV live attenuated and double recombinant HVT vaccines against virulent California 2018 Newcastle disease virus (NDV) in chickens. Vaccine, 2020, 38(34): 5507-5515.
doi: S0264-410X(20)30765-9 pmid: 32591288
[25]   Sun A J, Yang S K, Luo J, et al. UL28 and UL33 homologs of Marek’s disease virus terminase complex involved in the regulation of cleavage and packaging of viral DNA are indispensable for replication in cultured cells. Veterinary Research, 2021, 52(1): 20.
doi: 10.1186/s13567-021-00901-5
[26]   Darteil R, Bublot M, Laplace E, et al. Herpesvirus of Turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens. Virology, 1995, 211(2): 481-490.
pmid: 7645252
[27]   Tsukamoto K, Kojima C, Komori Y, et al. Protection of chickens against very virulent infectious bursal disease virus (IBDV) and Marek’s disease virus (MDV) with a recombinant MDV expressing IBDV VP2. Virology, 1999, 257(2): 352-362.
pmid: 10329546
[28]   张芙寿. 表达H5N2亚型禽流感病毒HA抗原重组马立克氏病病毒的构建. 泰安: 山东农业大学, 2015.
[28]   Zhang F S. Construction of recombination Marek’s disease viruses(MDVs) expressing H5N2-HA. Taian: Shandong Agricultural University, 2015.
[29]   刘成, 司振书, 郭晶, 等. CRISPR/Cas9基因编辑技术在禽病毒病研究中的应用. 中国预防兽医学报: [2021-05-25]. http://kns.cnki.net/kcms/detail/23.1417.S.20210105.1336.002.html.
[29]   Liu C, Si Z S, Guo J, et al. Application of CRISPR/Cas9 gene editing technology in the study of avian virus diseases. Chinese Journal of Preventive Veterinary Medicine: [2021-05-25]. http://kns.cnki.net/kcms/detail/23.1417.S.20210105.1336.002.html.
[30]   孙爱军, 王向茹, 杨帅康, 等. 一种快速精确编辑疱疹病毒基因组的方法. 生物工程学报, 2021, 37(4): 1376-1384.
[30]   Sun A J, Wang X R, Yang S K, et al. A rapid and accurate method for herpesviral gnome editing. Chinese Journal of Biotechnology, 2021, 37(4): 1376-1384.
[31]   Shi M Y, Li M, Wang W W, et al. The emergence of a vv + MDV can break through the protections provided by the current vaccines. Viruses, 2020, 12(9): 1048.
doi: 10.3390/v12091048
[32]   田明星. 四川部分地区鸡马立克病毒分子流行病学调查. 雅安: 四川农业大学, 2011.
[32]   Tian M X. Molecular epidemiologic survey on Marek’s disease virus in some districts of Sichuan Province. Yaan: Sichuan Agricultural University, 2011.
[33]   van Hulten M C W, Cruz-Coy J, Gergen L, et al. Efficacy of a Turkey herpesvirus double construct vaccine (HVT-ND-IBD) against challenge with different strains of Newcastle disease, infectious bursal disease and Marek’s disease viruses. Avian Pathology, 2021, 50(1): 18-30.
doi: 10.1080/03079457.2020.1828567
[34]   许曾焜. 表达新城疫病毒F蛋白重组火鸡疱疹病毒的构建及免疫原性初步评价. 北京: 中国农业科学院, 2020.
[34]   Xu Z K. Construction and preliminary immunogenicity evaluation of recombinant HVT expressing Newcastle disease virus F protein. Beijing: Chinese Academy of Agricultural Sciences, 2020.
[35]   Rauw F, Ngabirano E, Gardin Y, et al. Effectiveness of a simultaneous rHVT-F(ND) and rHVT-H5(AI) vaccination of day-old chickens and the influence of NDV- and AIV-specific MDA on immune response and conferred protection. Vaccines, 2020, 8(3): 536.
doi: 10.3390/vaccines8030536
[36]   闫帅, 崔红玉, 李巧玲, 等. 表达鸡新城疫病毒F蛋白的重组马立克氏病毒的构建及其鉴定. 中国预防兽医学报, 2012, 34(6): 423-427.
[36]   Yan S, Cui H Y, Li Q L, et al. Construction and identification of recombinant Marek’s disease virus vaccine strain 814 expressing the F protein of NDV. Chinese Journal of Preventive Veterinary Medicine, 2012, 34(6): 423-427.
[1] LIANG Ying, LIU Jin-ying, FAN Xiao-hui, SONG De-zhi, XIAO Qing, YIN Jun, FENG An-lin, YANG Li, ZHOU Dan-ni, LAI Zhen-pin. The Prokaryotic Expression and Identification of HN Gene Fragment of Newcastle Disease Virus Strain 7793[J]. China Biotechnology, 2013, 33(8): 32-37.
[2] CHUAI Xia, TAN Wen-Jie. Infectious Cloning Approach and Application for Varicella-Zoster Virus Based on Bacterial Artificial Chromosomes[J]. China Biotechnology, 2010, 30(05): 110-115.
[3] ZHANG Li-Na . The Comparisons of cloning,expression and immunogenicity of conservation region fragment of HN gene among different NDV genotypes[J]. China Biotechnology, 2008, 28(5): 93-98.