Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 70-77    DOI: 10.13523/j.cb.2008125
    
Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection
ZHOU Zi-hui1,2,LIU Xiao-xian1,2,HUANG Hao1,XIAO Rui2,QI Ke-zong1,**(),WANG Sheng-qi2,**()
1 Anhui Agricultural University, Hefei 230036, China
2 Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
Download: HTML   PDF(7116KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The surface-enhanced Raman scattering (SERS) technology has received extensive attention in the field of pathogen detection due to its prominent advantages of high sensitivity, rapid detection, high specificity and non-destructive characterization.The research progress of marker-based SERS methods in the field of pathogen detection in recent years was summarized. Moreover, the construction and application of a multifunctional SERS detection platform for pathogenic bacteria were introduced. Finally, the future development of SERS as a real-time, efficient and reliable tool for detecting pathogens is prospected.



Key wordsSurface-enhanced Raman scatter      Lable-based SERS      Pathogenic bacteria      Rapid detection     
Received: 17 August 2020      Published: 08 April 2021
ZTFLH:  Q819  
Corresponding Authors: Ke-zong QI,Sheng-qi WANG     E-mail: qkz@ahau.edu.cn
Cite this article:

ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection. China Biotechnology, 2021, 41(2/3): 70-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2008125     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/70

Fig.1 Schematic diagram of label-based and label-free SERS methods for bacterial detection The insert figures in(a)and(b) were referenced from Ref [28] and Ref [29]
[1]   Dong A, Lan S, Huang J F, et al. Modifying Fe3O4-functionalized nanoparticles with N-halamine and their magnetic/antibacterial properties. ACS Applied Materials & Interfaces, 2011,3(11):4228-4235.
pmid: 22008460
[2]   Yang D T, Zhou H B, Haisch C, et al. Reproducible E. coli detection based on label-free SERS and mapping. Talanta, 2016,146:457-463.
doi: 10.1016/j.talanta.2015.09.006 pmid: 26695290
[3]   Zhou H B, Yang D T, Ivleva N P, et al. Label-free in situ discrimination of live and dead bacteria by surface-enhanced raman scattering. Analytical Chemistry, 2015,87(13):6553-6561.
doi: 10.1021/acs.analchem.5b01271 pmid: 26017069
[4]   Srivastava S K, Hamo H B, Kushmaro A, et al. Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films. The Analyst, 2015,140(9):3201-3209.
[5]   Lu X N, Samuelson D R, Xu Y H, et al. Detecting and tracking nosocomial methicillin-resistant Staphylococcus aureus using a microfluidic SERS biosensor. Analytical Chemistry, 2013,85(4):2320-2327.
pmid: 23327644
[6]   Zhou H B, Yang D T, Ivleva N P, et al. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Analytical Chemistry, 2014,86(3):1525-1533.
doi: 10.1021/ac402935p pmid: 24387044
[7]   Walter A, M?rz A, Schumacher W, et al. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab on a Chip, 2011,11(6):1013-1021.
doi: 10.1039/c0lc00536c pmid: 21283864
[8]   Pahlow S, Meisel S, Cialla-May D, et al. Isolation and identification of bacteria by means of Raman spectroscopy. Advanced Drug Delivery Reviews, 2015,89:105-120.
doi: 10.1016/j.addr.2015.04.006 pmid: 25895619
[9]   Jarvis R M, Goodacre R. Characterisation and identification of bacteria using SERS. Chemical Society Reviews, 2008,37(5):931-936.
[10]   Abdelhamid H N, Wu H F. Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. Journal of Materials Chemistry B, 2013,1(32):3950-3961.
doi: 10.1039/c3tb20413h pmid: 32261221
[11]   Cheng D, Yu M Q, Fu F, et al. Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Analytical Chemistry, 2016,88(1):820-825.
pmid: 26641108
[12]   Qiu S Y, Lin Z Y, Zhou Y M, et al. Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles. The Analyst, 2015,140(4):1149-1154.
doi: 10.1039/c4an02106a pmid: 25503063
[13]   Li D Y, Dong Y H, Li B Y, et al. Colorimetric sensor array with unmodified noble metal nanoparticles for naked-eye detection of proteins and bacteria. The Analyst, 2015,140(22):7672-7677.
pmid: 26446513
[14]   Liu T Y, Tsai K T, Wang H H, et al. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nature Communications, 2011,2:1.
[15]   Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974,26(2):163-166.
[16]   Jeanmaire D L, van Duyne R P. Surface Raman spectroelectrochemistry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977,84(1):1-20.
[17]   Golightly R S, Doering W E, Natan M J. Surface-enhanced Raman spectroscopy and homeland security: a perfect match? ACS Nano, 2009,3(10):2859-2869.
[18]   Jarvis R M, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Analytical Chemistry, 2004,76(1):40-47.
doi: 10.1021/ac034689c pmid: 14697030
[19]   Wang Y L, Lee K, Irudayaraj J. Silver nanosphere SERS probes for sensitive identification of pathogens. The Journal of Physical Chemistry C, 2010,114(39):16122-16128.
[20]   Driskell J D, Kwarta K M, Lipert R J, et al. Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Analytical Chemistry, 2005,77(19):6147-6154.
doi: 10.1021/ac0504159 pmid: 16194072
[21]   Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 2002,14(18):R597-R624.
[22]   Premasiri W R, Moir D T, Klempner M S, et al. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. The Journal of Physical Chemistry B, 2005,109(1):312-320.
pmid: 16851017
[23]   Patel I S, Premasiri W R, Moir D T, et al. Barcoding bacterial cells: A SERS based methodology for pathogen identification. Journal Raman Spectroscopy, 2008,39(11):1660-1672.
[24]   Efrima S, Zeiri L. Understanding SERS of bacteria. Journal of Raman Spectroscopy, 2009,40(3):277-288.
[25]   Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy. Annual Review of Analytical Chemistry,, 2008,1(1):601-626.
[26]   Porter M D, Lipert R J, Siperko L M, et al. SERS as a bioassay platform: fundamentals, design, and applications. Chemical Society reviews, 2008,37(5):1001-1011.
[27]   Wang, C W, Wang J F, Li M, et al. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. The Analyst, 2016,141(22):6226-6238.
doi: 10.1039/c6an01105e pmid: 27704076
[28]   Wang C W, Gu B, Liu Q Q, et al. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. International Journal of Nanomedicine, 2018,13:1159-1178.
pmid: 29520142
[29]   Wang J F, Wu X Z, Wang C W, et al. Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Applied Materials & Interfaces, 2016,8(31):19958-19967.
doi: 10.1021/acsami.6b07528 pmid: 27420923
[30]   Peng R, Si Y, Deng T, et al. A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chemical Communications(Cambridge, England), 2016,52(55):8553-8556.
[31]   Zhang X, Li Y Y, Cao J P, et al. Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz. Journal of Statistical Mechanics: Theory and Experiment, 2015,2015(5):P05014.
[32]   Fabris L. SERS tags: The next promising tool for personalized cancer detection? ChemNanoMat, 2016,2(4):249-258.
[33]   Lin Y F, Hamme Ii A T. Targeted highly sensitive detection/eradication of multi-drug resistant Salmonella DT104 through gold nanoparticle-SWCNT bioconjugated nanohybrids. The Analyst, 2014,139(15):3702-3705.
doi: 10.1039/c4an00744a pmid: 24897935
[34]   Saadet Uluok Z U, Burcu G, Ugur T, et al. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms. J Nanopart Res, 2015,17(1):1-12.
[35]   Liu H B, Du X J, Zang Y X, et al. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis. Journal of Agricultural and Food Chemistry, 2017,65(47):10290-10299.
doi: 10.1021/acs.jafc.7b03957 pmid: 29095602
[36]   Cho I H, Bhandari P, Patel P, et al. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef. Biosensors and Bioelectronics, 2015,64:171-176.
[37]   Kearns H, Goodacre R, Jamieson L E, et al. SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Analytical Chemistry, 2017,89(23):12666-12673.
doi: 10.1021/acs.analchem.7b02653 pmid: 28985467
[38]   Khan S A, Singh A K, Senapati D, et al. Targeted highly sensitive detection of multi-drug resistant salmonella DT104 using gold nanoparticles. Chemical Communications, 2011,47(33):9444.
pmid: 21776500
[39]   Huang P J, Tay L L, Tanha J, et al. Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria. Chemistry, 2009,15(37):9330-9334.
doi: 10.1002/chem.200901397 pmid: 19655352
[40]   Xiao N, Wang C, Yu C X. A self-referencing detection of microorganisms using surface enhanced Raman scattering nanoprobes in a test-in-a-tube platform. Biosensors, 2013,3(3):312-326.
[41]   Abbaspour A, Norouz-Sarvestani F, Noori A, et al. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosensors and Bioelectronics, 2015,68:149-155.
doi: 10.1016/j.bios.2014.12.040 pmid: 25562742
[42]   Yuan J L, Yu Y, Li C, et al. Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Microchimica Acta, 2014,181(3-4):321-327.
[43]   Chang Y C, Yang C Y, Sun R L, et al. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports, 2013,3:1863.
[44]   Duan N, Wu S J, Zhu C Q, et al. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Analytica Chimica Acta, 2012,723:1-6.
pmid: 22444566
[45]   Wang J F, Wu X Z, Wang C W, et al. Magnetically assisted surface-enhanced raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Applied Materials & Interfaces, 2015,7(37):20919-20929.
doi: 10.1021/acsami.5b06446 pmid: 26322791
[46]   Zhang H, Ma X Y, Liu Y, et al. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosensors and Bioelectronics, 2015,74:872-877.
doi: 10.1016/j.bios.2015.07.033 pmid: 26241735
[47]   Duan N, Chang B Y, Zhang H, et al. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. International Journal of Food Microbiology, 2016,218:38-43.
[48]   Duan N, Shen M, Qi S, et al. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020,230:118103.
[49]   Zhang C Y, Wang C W, Xiao R, et al. Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. Journal of Materials Chemistry B, 2018,6(22):3751-3761.
[50]   Yin Y M, Li Q, Ma S S, et al. Prussian blue as a highly sensitive and background-free resonant Raman reporter. Analytical Chemistry, 2017,89(3):1551-1557.
doi: 10.1021/acs.analchem.6b03521 pmid: 28208262
[51]   El-Boubbou K, Gruden C, Huang X F. Magnetic glyco-nanoparticles: A unique tool for rapid pathogen detection, decontamination, and strain differentiation. Journal of the American Chemical Society, 2007,129(44):13392-13393.
[52]   Tamer U, Boyac?iH, Temur E, et al. Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application . Journal of Nanoparticle Research, 2011,13(8):3167-3176.
[53]   Wang Y L, Ravindranath S, Irudayaraj J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Analytical and Bioanalytical Chemistry, 2011,399(3):1271-1278.
doi: 10.1007/s00216-010-4453-6 pmid: 21136046
[54]   Pang Y F, Wan N, Shi L L, et al. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Analytica Chimica Acta, 2019,1077:288-296.
[55]   Drake P, Jiang P S, Chang H W, et al. Raman based detection of Staphylococcus aureus utilizing single domain antibody coated nanoparticle labels and magnetic trapping. Analytical Methods, 2013,5(16):4152.
[56]   Guven B, Basaran-akgul N, Temur E , et al. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia colienumeration. The Analyst, 2011,136(4):740-748.
pmid: 21125089
[57]   Yang S J, Ouyang H, Su X X, et al. Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers. Biosensors and Bioelectronics, 2016,78:174-180.
doi: 10.1016/j.bios.2015.11.041 pmid: 26606309
[58]   Yuan K S, Mei Q S, Guo X I, et al. Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chemical Science, 2018,9(47):8781-8795.
[59]   Zhou Q T, Meng G W, Zheng P, et al. A surface-enhanced Raman scattering sensor integrated with battery-controlled fluidic device for capture and detection of trace small molecules. Scientific Reports, 2015,5:12865.
doi: 10.1038/srep12865 pmid: 26238799
[60]   Wang R, Kim K, Choi N, et al. Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips. Sensors and Actuators B: Chemical, 2018,270:72-79.
[61]   Liu H B, Chen C Y, Zhang C N, et al. Functionalized AuMBA @Ag nanoparticles as an optical and SERS dual probe in a lateral flow strip for the quantitative detection of Escherichia coli O157:H7. Journal of Food Science, 2019,84(10):2916-2924.
doi: 10.1111/1750-3841.14766 pmid: 31502678
[62]   Shi L L, Xu L, Xiao R, et al. Rapid, quantitative, high-sensitive detection of Escherichia coli O157:H7 by gold-shell silica-core nanospheres-based surface-enhanced Raman scattering lateral flow immunoassay. Frontiers in Microbiology, 2020,11:596005.
[63]   Rodríguez-Lorenzo L, Garrido-Maestu A, Bhunia A K, et al. Gold nanostars for the detection of foodborne pathogens via surface-enhanced Raman scattering combined with microfluidics. ACS Applied Nano Materials, 2019,2(10):6081-6086.
[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] YUAN Bo-xin,WU Hao,YAN Chun-xiao,LU Juan-e,WEI Zhen-ping,QIAO Jian-jun,RUAN Hai-hua. Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus[J]. China Biotechnology, 2021, 41(7): 81-90.
[3] HUANG Hai-long, ZHU Peng, YANG Hao. LAMP-LFD Technology and Its Application in Rapid Detection of Biological[J]. China Biotechnology, 2015, 35(12): 89-95.
[4] FENG Fei, XIE Zhen-wen, ZENG Mu-heng. Studies on Detection of Salmonella typhimurium in Food by Multiplex Polymerase Chain Methods[J]. China Biotechnology, 2011, 31(01): 65-69.
[5] XU Xi-Gang, LI Su-Long, YANG Jun-Hong, LI Dan-Dan, JIANG Yan-Chun, XIE Xiao-Feng, CUI Li-Chun. Establishment of Rapid Detection Method for Vibrio vulnificus in Aquatic Food by Loop-Mediated Isothermal Amplification[J]. China Biotechnology, 2010, 30(06): 96-102.
[6] GAO Xin, WANG Jing-Lin. The Application of Gene Microarray in Detecting Pathogenic Bacteria[J]. China Biotechnology, 2010, 30(02): 100-104.