Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (7): 92-103    DOI: 10.13523/j.cb.20160713
    
Research Progress in CRISPR/Cas System and the Prospect in Animal Genetic Improvement
DU Jing-jing1, LI Qiang2, CHENG Xiao1, SHEN Lin-yuan1, LI Xue-wei1, ZHANG Shun-hua1, ZHU Li1
1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
2 Sichuan Province General Station of Animal Husbandry, Chengdu 610041, China
Download: HTML   PDF(1147KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

CRISPR/Cas system widely exists in the bacteria and archaea which is an adaptive immune mechanism of protection by mediating the degradation of exogenous DNA to achieve resistance against invading viruses and exogenous DNA and it is a newly developed genome fixed-point editing techniques. The basic structure, mechanism of action, classification, application and other aspects of the CRISPR/Cas system were introduced, and analyzes the prospect of applying it in animal genetic improvement.



Key wordsGene editing      Genetic improvement      CRISPR/Cas system      Immune protection     
Received: 12 January 2016      Published: 02 March 2016
ZTFLH:  Q756  
Cite this article:

DU Jing-jing, LI Qiang, CHENG Xiao, SHEN Lin-yuan, LI Xue-wei, ZHANG Shun-hua, ZHU Li. Research Progress in CRISPR/Cas System and the Prospect in Animal Genetic Improvement. China Biotechnology, 2016, 36(7): 92-103.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160713     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I7/92

[1] Mussolino C,Cathomen T.RNA guides genome engineering.Nat Biotechnol,2013,31(3):208-209.
[2] Pan Y,Xiao L,Li A S,et al.Biological and biomedical applications of engineered nucleases.Molecular Biotechnology,2013,55(1):54-62.
[3] Sander J D,Joung J K.CRISPR-Cas systems for editing,regulating and targeting genomes.Nat Biotechnol,2014,32(4):347-355.
[4] Ramalingam S,London V,Kandavelou K,et al.Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases.Stem Cells Dev,2013,22(4):595-610.
[5] Dong P,Yu F,Fan X,et al.Inhibition of ATIR by shRNA prevents collagen synthesis in hepatic stellate cells.Molecular and Cellular Biochemistry,2010,344(1-2):195-202.
[6] Carroll D,Beumer K J.Genome engineering with TALENs and ZFNs:repair pathways and donor design.Methods,2014,69(2):137-141.
[7] Bedell V M,Wang Y,Campbell J M,et al.In vivo genome editing using a high-efficiency TALEN system.Nature,2012,491(7422):114-118.
[8] Sung Y H,Baek I J,Kim D H,et al.Knockout mice created by TALEN-mediated gene targeting.Nat Biotechnol,2013,31(1):23-24.
[9] Matzke M A,Mosher R A.RNA-directed DNA methylation:an epigenetic pathway of increasing complexity.Nature Reviews Genetics,2014,15(6):394-408.
[10] Wang H,Yang H,Shivalila C S,et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell,2013,153(4):910-918.
[11] Chylinski K,Makarova K S,Charpentier E,et al.Classification and evolution of type Ⅱ CRISPR-Cas systems.Nucleic Acids Res,2014,42(10):6091-6105.
[12] Cong L,Ran F A,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems.Science,2013,339(6121):819-823.
[13] Alaiyan B,Ilyayev N,Stojadinovic A,et al.Differential expression of colon cancer associated transcript1(CCAT1) along the colonic adenoma-carcinoma sequence.BMC cancer,2013,13(1):196.
[14] Westra E R,Swarts D C,Staals R H,et al.The CRISPRs,they are a-changin:how prokaryotes generate adaptive immunity.Annu Rev Genet,2012,46:311-339.
[15] Labrie S J,Samson J E,Moineau S.Bacteriophage resistance mechanisms.Nat Rev Microbiol,2010,8(5):317-327.
[16] Barrangou R,Fremaux C,Deveau H,et al.CRISPR provides acquired resistance against viruses in prokaryotes.Science,2007,315(5819):1709-1712.
[17] Marraffini L A,Sontheimer E J.CRISPR interference:RNA-directed adaptive immunity in bacteria and archaea.Nature Reviews Genetics,2010,11(3):181-190.
[18] Lillestøl R,Redder P,Garrett R A,et al.A putative viral defence mechanism in archaeal cells.Archaea,2006,2(1):59-72.
[19] Mojica F J,García-Martínez J,Soria E.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.Journal of Molecular Evolution,2005,60(2):174-182.
[20] Magadán A H,Dupuis M-È,Villion M,et al.Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system.PLoS One,2012,7(7):e40913.
[21] Bland C,Ramsey T L,Sabree F,et al.CRISPR recognition tool (CRT):a tool for automatic detection of clustered regularly interspaced palindromic repeats.BMC Bioinformatics,2007,8(1):209.
[22] Jansen R,Embden J,Gaastra W,et al.Identification of genes that are associated with DNA repeats in prokaryotes.Molecular Microbiology,2002,43(6):1565-1575.
[23] Deveau H,Garneau J E,Moineau S.CRISPR/Cas system and its role in phage-bacteria interactions.Annual review of Microbiology,2010,64:475-493.
[24] Makarova K S,Grishin N V,Shabalina S A,et al.A putative RNA-interference-based immune system in prokaryotes:computational analysis of the predicted enzymatic machinery,functional analogies with eukaryotic RNAi,and hypothetical mechanisms of action.Biology Direct,2006,1(1):7.
[25] Jansen R,van Embden J D,Gaastra W,et al.Identification of a novel family of sequence repeats among prokaryotes.Omics:A Journal of Integrative Biology,2002,6(1):23-33.
[26] Pourcel C,Salvignol G,Vergnaud G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA,and provide additional tools for evolutionary studies.Microbiology,2005,151(3):653-663.
[27] Haft D H,Selengut J,Mongodin E F,et al.A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes.PLoS Computational Biology,2005,1(6):e60.
[28] Makarova K S,Haft D H,Barrangou R,et al.Evolution and classification of the CRISPR-Cas systems.Nature Reviews Microbiology,2011,9(6):467-477.
[29] Han D,Krauss G.Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2.FEBS Letters,2009,583(4):771-776.
[30] Wiedenheft B,Zhou K,Jinek M,et al.Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense.Structure,2009,17(6):904-912.
[31] Beane J D,Lee G K,Zheng Z,et al.Clinical scale zinc finger nuclease (ZFN)-driven gene-editing of PD-1 in tumor infiltrating lymphocytes (TIL) for the potential treatment of metastatic melanoma.Journal for Immunotherapy of Cancer,2014,2(Suppl 3):P2.
[32] Wood A J,Lo T-W,Zeitler B,et al.Targeted genome editing across species using ZFNs and TALENs.Science,2011,333(6040):307-307.
[33] Umasankar P K,Ma L,Thieman J R,et al.A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing.eLife,2014,10(3):1-33.
[34] Barrangou R,Fremaux C,Deveau H,et al.CRISPR provides acquired resistance against viruses in prokaryotes.Science,2007,315(5819):1709-1712.
[35] Li T,Du B.CRISPR-Cas system and coevolution of bacteria and phages.Hereditas,2011,33(3):213-218.
[36] Garneau J E,Dupuis M-È,Villion M,et al.The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.Nature,2010,468(7320):67-71.
[37] Beloglazova N,Brown G,Zimmerman M D,et al.A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats.Journal of Biological Chemistry,2008,283(29):20361-20371.
[38] Koonin E V,Wolf Y I.Genomics of bacteria and archaea:the emerging dynamic view of the prokaryotic world.Nucleic Acids Research,2008,36(21):6688-6719.
[39] Sorek R,Kunin V,Hugenholtz P.CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea.Nature Reviews Microbiology,2008,6(3):181-186.
[40] Bolotin A,Quinquis B,Sorokin A,et al.Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.Microbiology,2005,151(8):2551-2561.
[41] Horvath P,Romero D A,Coûté-Monvoisin A C,et al.Diversity,activity,and evolution of CRISPR loci in Streptococcus thermophilus.Journal of Bacteriology,2008,190(4):1401-1412.
[42] Lillestøl R K,Shah S A,Brügger K,et al.CRISPR families of the crenarchaeal genus Sulfolobus:bidirectional transcription and dynamic properties.Molecular Microbiology,2009,72(1):259-272.
[43] Mojica F,Diez-Villasenor C,Garcia-Martinez J,et al.Short motif sequences determine the targets of the prokaryotic CRISPR defence system.Microbiology,2009,155(3):733-740.
[44] Gudbergsdottir S,Deng L,Chen Z,et al.Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers.Molecular Microbiology,2011,79(1):35-49.
[45] Swarts D C,Mosterd C,Van Passel M W,et al.CRISPR interference directs strand specific spacer acquisition.PloS One,2012,7(4):e35888.
[46] Westra E R,van Erp P B,Künne T,et al.CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3.Molecular Cell,2012,46(5):595-605.
[47] Semenova E,Jore M M,Datsenko K A,et al.Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence.Proceedings of the National Academy of Sciences,2011,108(25):10098-10103.
[48] Zhang J,Rouillon C,Kerou M,et al.Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity.Molecular Cell,2012,45(3):303-313.
[49] Marraffini L A,Sontheimer E J.Self versus non-self discrimination during CRISPR RNA-directed immunity.Nature,2010,463(7280):568-571.
[50] Agari Y,Sakamoto K,Tamakoshi M,et al.Transcription profile of Thermus thermophilus CRISPR systems after phage infection.Journal of Molecular Biology,2010,395(2):270-281.
[51] Kunin V,Sorek R,Hugenholtz P.Evolutionary conservation of sequence and secondary structures in CRISPR repeats.Genome Biol,2007,8(4):R61.
[52] Marraffini L A,Sontheimer E J.Self versus non-self discrimination during CRISPR RNA-directed immunity.Nature,2010,463(7280):568-571.
[53] Mojica F J,Díez-Villaseñor C.The on-off switch of CRISPR immunity against phages in Escherichia coli.Molecular Microbiology,2010,77(6):1341-1345.
[54] Pul V,Wurm R,Arslan Z,et al.Identification and characterization of E.coli CRISPR-cas promoters and their silencing by H-NS,Molecular Microbiology,2010,75(6):1495-1512.
[55] Westra E R,Pul V,Heidrich N,et al.H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO.Molecular Microbiology,2010,77(6):1380-1393.
[56] Horvath P,Barrangou R.CRISPR/Cas,the immune system of bacteria and archaea.Science,2010,327(5962):167-170.
[57] Marraffini L A,Sontheimer E J.CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.Science,2008,322(5909):1843-1845.
[58] Hale C R,Zhao P,Olson S,et al.RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.Cell,2009,139(5):945-956.
[59] Van der Oost J,Brouns S J.RNAi:prokaryotes get in on the act.Cell,2009,139(5):863-865.
[60] Sinkunas T,Gasiunas G,Fremaux C,et al.Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.The EMBO journal,2011,30(7):1335-1342.
[61] Wiedenheft B,van Duijn E,Bultema J B,et al.RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions.Proceedings of the National Academy of Sciences,2011,108(25):10092-10097.
[62] Haurwitz R E,Jinek M,Wiedenheft B,et al.Sequence-and structure-specific RNA processing by a CRISPR endonuclease.Science,2010,329(5997):1355-1358.
[63] Friedland A E,Tzur Y B,Esvelt KM,et al.Heritable genome editing in C.elegans via a CRISPR-Cas9 system.Nature Methods,2013,10(8):741-743.
[64] Deltcheva E,Chylinski K,Sharma C M,et al.CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ.Nature,2011,471(7340):602-607.
[65] Anantharaman V,Iyer L M,Aravind L.Discovery notes presence of a classical RRM-fold palm domain in Thg1-type 3'-5'nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains,2010,5(43):1-9.
[66] Cermak T,Doyle E L,Christian M,et al.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.Nucleic Acids Research,2011,39(12):H1.
[67] Jiang W,Bikard D,Cox D,et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems.Nature Biotechnology,2013,31(3):233-239.
[68] Mali P,Yang L,Esvelt K M,et al.RNA-guided human genome engineering via Cas9.Science,2013,339(6121):823-826.
[69] Hwang W Y,Fu Y,Reyon D,et al.Efficient genome editing in zebrafish using a CRISPR-Cas system.Nature Biotechnology,2013,31(3):227-229.
[70] Brouns S J,Jore M M,Lundgren M,et al.Small CRISPR RNAs guide antiviral defense in prokaryotes.Science,2008,321(5891):960-964.
[71] Jinek M,East A,Cheng A,et al.RNA-programmed genome editing in human cells.Elife,2013,2(e00471):1-9.
[72] Cho S W,Kim S,Kim J M,et al.Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease.Nature Biotechnology,2013,31(3):230-232.
[73] Ding Q,Regan S N,Xia Y,et al.Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs.Cell Stem Cell,2013,12(4):393.
[74] Qi L S,Larson M H,Gilbert L A,et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.Cell,2013,152(5):1173-1183.
[75] Schwank G,Koo B-K,Sasselli V,et al.Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.Cell Stem Cell,2013,13(6):653-658.
[76] Wu Y,Liang D,Wang Y,et al.Correction of a genetic disease in mouse via use of CRISPR-Cas9.Cell Stem Cell,2013,13(6):659-662.
[77] Raghavan A,Peters D,Kuperwasser N,et al.Functional characterization of a Cis-eQTL locus for plasma cholesterol using CRISPR/Cas genome editing in human pluripotent stem cells.Arteriosclerosis,Thrombosis,and Vascular Biology,2014,34(Suppl 1):A242-A242.
[78] Chen B,Gilbert L A,Cimini B A,et al.Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system.Cell,2014,156(1):373.
[79] Deans J R,Titova N V,Wickramaratne A,et al.SAT-272:Verifying affinity altering SNPs with Crispr/Cas system in HepG2 Cells.2015.
[80] Wang H,Yang H,Shivalila C S,et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell,2013,153(4):910-918.
[81] Li W,Teng F,Li T,et al.Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems.Nature Biotechnology,2013,31(8):684-686.
[82] Carlson D F,Tan W,Lillico S G,et al.Efficient TALEN-mediated gene knockout in livestock.Proceedings of the National Academy of Sciences,2012,109(43):17382-17387.
[83] Yu S,Luo J,Song Z,et al.Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle.Cell Research,2011,21(11):1638-1640.
[84] Kennedy E M,Bassit LC,Mueller H,et al.Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease.Virology,2015,2(476):196-205.
[85] Kennedy E M,Kornepati A V,Goldstein M,et al.Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease.J Virol,2014,88(20):11965-11972.
[86] Yang H,Wang H,Jaenisch R.Generating genetically modified mice using CRISPR/Cas-mediated genome engineering.Nat Protoc,2014,9(8):1956-1968.
[87] Li X,Yang Y,Bu L,et al.Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing.Cell Res,2014,24(4):501-504.
[88] Hwang W Y,Fu Y,Reyon D,et al.Efficient genome editing in zebrafish using a CRISPR-Cas system.Nat Biotechnol,2013,31(3):227-229.
[89] Wang H C,Yang Y,Xu S Y,et al.The CRISPR/Cas system inhibited the pro-oncogenic effects of alternatively spliced fibronectin extra domain A via editing the genome in salivary adenoid cystic carcinoma cells.Oral Dis,2015,21(5):608-618.
[90] Niu Y,Shen B,Cui Y,et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos.Cell,2014,156(4):836-843.
[91] Ramírez O,Quintanilla R,Varona L,et al.DECR1 and ME1 genotypes are associated with lipid composition traits in Duroc pigs.Journal of Animal Breeding and Genetics,2014,131(1):46-52.
[92] Hua T,Wu D,Ding W,et al.Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids.Journal of Biological Chemistry,2012,287(34):28956-28965.
[93] Zanou N,Gailly P.Skeletal muscle hypertrophy and regeneration:interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.Cellular and Molecular Life Sciences,2013,70(21):4117-4130.
[94] Zhu C,Gi G,Tao Z,et al.Development of skeletal muscle and expression of myogenic regulatory factors during embryonic development in Jinding ducks (Anas platyrhynchos domestica).Poultry Science,2014,93(5):1211-1216.
[95] Choi Y,Suh Y,Ahn J,et al.Muscle hypertrophy in heavy weight Japanese quail line:Delayed muscle maturation and continued muscle growth with prolonged upregulation of myogenic regulatory factors.Poultry Science,2014,93(9):2271-2277.
[96] McPherron A C,Lee S J.Double muscling in cattle due to mutations in the myostatin gene.Proceedings of the National Academy of Sciences,1997,94(23):12457-12461.
[97] Hamilton D N,Ellis M,Miller K D,et al.The effect of the Halothane and Rendement Napole genes on carcass and meat quality characteristics of pigs.Journal of Animal Science-Menasha Then Albany Then Champaign Illinois,2000,78(11):2862-2867.
[98] Gispert M,Faucitano L,Oliver M,et al.A survey of pre-slaughter conditions,halothane gene frequency,and carcass and meat quality in five Spanish pig commercial abattoirs.Meat Science,2000,55(1):97-106.
[99] Zou Q,Wang X,Liu Y,et al.Generation of gene-target dogs using CRISPR/Cas9 system.Journal of Molecular Cell Biology,2015,7(6):580-583.
[100] Davies K T,Tsagkogeorga G,Bennett N C,et al.Molecular evolution of growth hormone and insulin-like growth factor 1 receptors in long-lived,small-bodied mammals.Gene,2014,549(2):228-236.
[101] Standen P,Sferruzzi-Perri A N,Taylor R,et al.Maternal insulin-like growth factor 1 and 2 differentially affect the renin-angiotensin system during pregnancy in the guinea pig.Growth Hormone&IGF Research,2015,25(3):141-147.
[102] Klimenko A,Usatov A,Getmantseva L,et al.Effects of melanocortin-4 receptor gene on growth and meat traits in pigs raised in russia.American Journal of Agricultural and Biological Sciences,2014,9(2):232.
[103] Zuo B,Liu G,Peng Y,et al.Melanocortin-4 receptor (MC4R) polymorphisms are associated with growth and meat quality traits in sheep.Molecular Biology Reports,2014,41(10):6967-6974.
[104] Chu Q,Cai L,Fu Y,et al.Dkk2/Frzb in the dermal papillae regulates feather regeneration.Developmental Biology,2014,387(2):167-178.
[105] Wang Z,Li Q,Zhang B,et al.Single nucleotide polymorphism scanning and expression of the FRZB gene in pig populations.Gene,2014,543(2):198-203.
[106] Van Laere A S,Nguyen M,Braunschweig M,et al.A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig.Nature,2003,425(6960):832-836.
[107] Houston F,Goldmann W,Foster J,et al.Comparative susceptibility of New Zealand sheep with a range of PRNP genotypes to challenge with bovine spongiform encephalopathy and scrapie.In:PRION;2014:Landes Bioscience 1806 Rio Grandest,Austin,TX 78702 USA,2014:102-102.
[108] Czarnik U,Strychalski J,Barcewicz M,et al.The effect of insertion/deletion polymorphisms within the promoter and intron 1 sequences of the PRNP gene on the breeding value of Holstein-Friesian bulls.Animal Science Papers and Reports,2015,33(1):13-22.

[1] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[2] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[3] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[4] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[5] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[6] YANG Chun-yan,WANG Lei,MU Deng-cai,LI Fang-fang,SHEN Hao,ZHENG Shang-yong. Advances of Gene Editing in Disease Treatment[J]. China Biotechnology, 2019, 39(11): 87-95.
[7] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[8] Ran XU,Song CHEN. Research Progress of CRISPR/Cas9 Delivery System and Its Application in Gene-related Diseases[J]. China Biotechnology, 2018, 38(3): 81-88.
[9] XU Li, WANG Yue, YAO Chi-yuan, XU Ping. Trends and Development Bottleneck Analysis of Gene Editing Technology[J]. China Biotechnology, 2018, 38(12): 113-122.
[10] A Li ma, GAO Yuan, SU Xiao-hu, ZHOU Huan-min. Establishment of CRISPR/Cas9-edited FGF5 Cell Strains in Cashmere Goat[J]. China Biotechnology, 2016, 36(7): 41-47.
[11] YANG Fa-yu, GE Xiang-lian, GU Feng. Progress of Next-generation Targeted Gene-editing Techniques[J]. China Biotechnology, 2014, 34(2): 98-103.
[12] LIU Chun-Guo, LIU Meng, LI Hong-Chao, DU Jin-Ling, ZHANG Xin-Chao, DAN Wei-Lin. Construction of DNA Vaccine Expressing H1 Subtype Swine Flu Virus HA Gene and Its Immunogenicity in Balb/c Mice[J]. China Biotechnology, 2009, 29(10): 38-43.
[13] . The pathway for CoQ biosynthesis in microorganisms and the recent progress in the genetic improvement of microbial strains for CoQ10 production with the aid of molecular biological methods[J]. China Biotechnology, 2007, 27(10): 103-112.