Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (7): 41-47    DOI: 10.13523/j.cb.20160707
    
Establishment of CRISPR/Cas9-edited FGF5 Cell Strains in Cashmere Goat
A Li ma, GAO Yuan, SU Xiao-hu, ZHOU Huan-min
College of Life Science, Inner Mongolia Agricultural University, Key Laboratory of Bio-Manufacturing of Inner Mongolia Autonomous Region, Hohhot 010018, China
Download: HTML   PDF(1079KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To establish CRISPR/Cas9-edited FGF5 cell strains, we designed gRNA targeted sites around the first extra of the FGF5 gene and constructed two vectors by Cas/gRNA plasmid construction kit weredesigned. vectors into cashmere goat fibroblasts by electroporation respectively was transfected. T7 endonuclease 1 (T7E1) was used for the detection of mutation efficiency. The best vector was transfected into cashmere goat fetal fibroblasts and all the monoclones was cultured. Then all the cell colonies by sequencing were idenfified. Sequencing results demonstrated that CRISPR/Cas9 was available for FGF5 gene edited and 20 FGF5+/- and FGF5-/- cell colonies were obtained, and the effiency was 14.81%. The double mutated cell colonies could be used as donor cells to construct reconstructed embryos which provide the possibility in production of FGF5 edited cashmere goat in the future.



Key wordsCRISPR/Cas9      Cashmere goat      Gene editing      FGF5     
Received: 07 January 2016      Published: 02 March 2016
ZTFLH:  Q789  
Cite this article:

A Li ma, GAO Yuan, SU Xiao-hu, ZHOU Huan-min. Establishment of CRISPR/Cas9-edited FGF5 Cell Strains in Cashmere Goat. China Biotechnology, 2016, 36(7): 41-47.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160707     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I7/41

[1] 王丙萍.靶除FGF5基因体细胞克隆绒山羊的研究.内蒙古:内蒙古农业大学,生命科学学院,2014.Wang B P.The Study on the Cloned Goat Knockout FGF5 Gene Transferred Somatic Cell.Inner Mongolia Agricultural University,College of Life Science,2014.
[2] Hebert J M,Rosenquist T,Gotz J,et al.FGF5 as a regulator of the hair growth cycle:evidence from targeted and spontaneous mutations.Cell,1994,78(6):1017-1025.
[3] Nguyen H Q,Danilenko D M,Bucay N,et al.Expression of keratinocyte growth factor in embryonic liver of transgenic mice causes changes in epithelial growth and differentiation resulting in polycystic kidneys and other organ malformations.Oncogene,1996,12(10):2109-2119.
[4] Rosenquist T A,Martin G R.Fibroblast growth factor signalling in the hair growth cycle:expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle.Dev Dyn,1996,205:379-386.
[5] Sundberg J P,Rourk M K,Boggess D,et al.Angora mouse mutation:altered hair cycle,follicular dystrophy,phenotypic maintenance of skin grafts,and changes in keratin expression.Vet Pathol,1997,34(5):171-179.
[6] 高爱琴,李宁,李金泉,赵兴波.山羊FGF5基因单核苷酸多态性群体遗传学分析.华北农学报,2006,21(3):71-76.Gao A Q,Li N,Li J Q,et al.Analysis on single nucleotide polymorphisms of FGF5 gene in different goat breeds.Acta Agriculturae Boreali-Sinica,2006,21(3):71-76.
[7] Lillestøl R,Redder P,Garrett R A,et al.A putative viral defence mechanism in archaeal cells.Archaea,2006,2(1):59-72.
[8] Bolotin A,Quinquis B,Sorokin A,et al.Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.Microbiology,2005,151(8):2551-2561.
[9] Barrangou R,Fremaux C,Deveau H,et al.CRISPR provides acquired resistance against viruses in prokaryotes.Science,2007,315(5819):1709-1712.
[10] Jinek M,Chylinski K,Fonfara I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science,2012,337(6096):816-821.
[11] Sapranauskas R,Gasiunas G,Fremaux C,et al.The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli.Nucleic Acids Res,2011,39(21):9275-9272.
[12] Magadán A H,Dupuis M È,Villion M,et al.Cleavage of phage DNA by theStreptococcus thermophilus CRISPR3-Cas system.PLoS One,2012,7(7):e40913.
[13] Cong L,Ran F A,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems.Science,2013,339(6121):819-823.
[14] Mali P,Yang L,Esvelt KM,et al.RNA-guided human genome engineering via Cas9.Science,2013,339(6121):823-826.
[15] Ding Q,Regan Stephanie N,Xia Y,et al.Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs.Cell Stem Cell,2013,12(4):393-394.
[16] Ni W,Qiao J,Hu S,et al.Efficient gene knockout in goats using CRISPR/Cas9 system.PLoS One,2014,9(9):e106718.
[17] Feng Z Y,Zhang B T.Efficient genome editing in plants using a CRISPR/Cas system.Cell Res,2013,23(10):1229-1232.
[18] Hwang W Y,Fu Y,Reyon D,et a1.Efficient genome editing in zebrafish using a CRISPR-Cas system.Nat Biotechnol,2013,31(3):227-229.
[19] Jinek M,East A,Cheng A,et a1.RNA-programmed genome editing in human cells.Elife,2013,2:e00471.
[20] Wang H,Yang H,Shivalila C S,et a1.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell,2013,153(4):910-918.
[21] He X L,Yuan C,Chen Y L.Isolation,characterization,and expression analysis of FGF5 isoforms in Cashmere goat.Small Ruminant Research,2014,116(2~3):111-117.
[22] Ma K,Wang J,Shen B,et al.Efficient targeting of FATS at a common fragile site in mice through TALEN-mediated double-hit genome modification.Biotechnol Lett,2014,36(3):471-479.
[23] 李辉,施振旦.CRISPR/Cas9新型基因打靶系统的研究进展.江苏农业学报,2013,29(4):907-911.Li H,Shi Z D.Research progress of gene targeting technology of CRISPR/Cas9 system.Jiangsu J of Agr Sci,2013,29(4):907-911.

[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[4] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[5] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[6] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[7] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[8] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[9] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[10] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[11] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[12] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[13] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[14] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[15] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.