Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (12): 113-122    DOI: 10.13523/j.cb.20181214
Orginal Article     
Trends and Development Bottleneck Analysis of Gene Editing Technology
XU Li,WANG Yue,YAO Chi-yuan,XU Ping()
Shanghai Information Center of Life Sciences,Shanghai Information Center for Life Sciences,CAS,Shanghai 200031,China
Download: HTML   PDF(940KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Gene editing technology has spurred a global upsurge. In particular, CRISPR technology has become the most promising genome editing technology, and has rapidly achieved applications in livestock breeding, biomedical research and development, and related clinical trials have been carried out. Its development has driven the new direction of the development of the bio-industry, which has given birth to huge social and economic values. The current industrial structure has taken shape. China has always attached great importance to genetic editing, and has closely followed the pace of international development in scientific research and achieved a series of breakthrough results. At the same time, China has already reached the international leading level in the field of application of gene editing such as the construction of large animal models and clinical trials for disease treatment. In the future, China still needs to further promote technological innovation, seize international discourse rights in this field, and optimize the policy environment to ensure rapid and orderly development of the downstream applications of our country’s gene editing technology.



Key wordsGene editing technology      Commercial application      Industrial pattern     
Received: 17 July 2018      Published: 10 January 2019
ZTFLH:  Q78  
Corresponding Authors: Ping XU     E-mail: xuping@sibs.ac.cn
Cite this article:

XU Li, WANG Yue, YAO Chi-yuan, XU Ping. Trends and Development Bottleneck Analysis of Gene Editing Technology. China Biotechnology, 2018, 38(12): 113-122.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181214     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I12/113

国家机构/公司名称采用技术针对疾病状态
美国华盛顿国家儿童医学中心CRISPR/Cas9、iPSC1型神经纤维瘤病、中枢神经系统肿瘤已开展
宾夕法尼亚大学CRISPR、TCR、PD-1多发性骨髓瘤、黑色素瘤、滑膜肉瘤、黏液样/圆细胞脂肪肉瘤已开展
国家人类基因组研究所CRISPR/Cas9镰状细胞贫血已开展
NIH临床中心CRISPR/Cas9胃肠道上皮癌、胃肠道癌已批准,尚未招募
中国四川大学华西医院CRISPR/Cas9、PD-1转移性非小细胞肺癌已批准,尚未招募
南京鼓楼医院CRISPR/Cas9、PD-1胃癌、鼻咽癌、T细胞淋巴瘤、成人霍奇金淋巴瘤、弥散性大B细胞淋巴瘤已开展
中国人民解放军307医院CRISPR/Cas9HIV-1感染已开展
香港威尔士亲王医院CRISPR胃肠道感染已开展
杭州肿瘤医院CRISPR/Cas9、PD-1食道癌已开展
中国人民解放军总医院CRISPR/Cas9B细胞白血病、B细胞淋巴瘤已开展
中国人民解放军总医院CRISPR/Cas9、CAR-TB细胞白血病、B细胞淋巴瘤已开展
中山大学第一附属医院TALEN、CRISPR/Cas9人乳头瘤病毒相关恶性肿瘤已批准,尚未招募
北京大学第一附属医院CRISPR/Cas9、PD-1侵入性膀胱癌已批准,尚未招募
北京大学第一附属医院CRISPR、PD-1前列腺癌已批准,尚未招募
北京大学第一附属医院CRISPR/Cas9、PD-1转移性肾细胞癌已批准,尚未招募
Table 1 Clinical trials using gene editing technology
Fig.1 Organizations of patent applications for gene editing technology in 2008-2017
Fig.2 Industry chain of gene editing technology
公司采用技术在研项目备注
美国孟山都公司CRISPR技术玉米、大豆和棉花等主要农作物以及果蔬种子获美国MIT-哈佛博德研究所CRISPR技术专利在农业领域的全球非独家许可
美国杜邦先锋公司CRISPR技术生产酸奶和奶酪的细菌;抗旱玉米、小麦等多种作物获美国加州大学伯克利分校CRISPR技术专利在主要农作物中的独家许可
美国陶氏益农公司ZFN和CRISPR技术精准基因组修饰技术平台EXZACTTM该平台已与孟山都公司达成全球非独家许可协议
法国Cellectis公司TALEN、CRISPR技术马铃薯、小麦、大豆等作物
美国Recombinetics公司TALEN、ZFN和CRISPR技术家畜
美国Cibus公司TALEN和CRISPR技术耐除草剂油菜、亚麻首个基因编辑作物抗磺酰脲除草剂油菜TM已在美国商业化种植;耐草甘膦亚麻有望在美国市场推出
Table 2 Main companies for application of gene editing technology in breeding
公司名称成立时间国家创始人采用技术在研项目上市/融资情况
Editas
Medicine
2013年美国张锋,Jennifer Doudna,George Church等CRISPR-cas9LCA等罕见眼疾、肝癌、肺癌、白血病、肌肉疾病纳斯达克上市,最早IPO基因编辑公司,A轮融资4300万美元,B轮融资1.2亿美元
Intellia
Therapeutics
2014年美国Jennifer DoudnaCRISPR-cas9白血病、癌症、转甲状腺素蛋白淀粉样变性、α1-抗胰蛋白酶缺乏症和乙肝病毒、造血干细胞相关疾病2016年5月纳斯达克上市,第二家IPO基因编辑公司,2014年,A轮融资100万美元,2015年9月, B轮融资7000万美元
CRISPR
Therapeutics
2013年瑞士Emmanuelle CharpentierCRISPR-cas9囊肿性纤维化、失明、血液病及先天性心脏病纳斯达克上市,第三家IPO基因编辑公司
Caribou
Biosciences
2011年美国Jennifer Doudna等CRISPR-cas9多种疾病融资4446万美元
Sangamo
BioSciences
1995年美国Edward O. Lanphier IIZFN肝病、血友病、粘多糖累积症纳斯达克上市
Exonics
Therapeutics
2017年美国Eric OlsonCRISPR-cas9杜氏肌营养不良和其他神经肌肉疾病融资4500万美元
Homology
Medicines
2015年美国Saswati Chatterjee等腺病毒AAVCD34阳性疾病、囊性纤维化、杜氏肌营养不良症、镰状细胞贫血融资1.27亿美元
Poseida
Therapeutics
2015年美国George Church等CAR-T+CRISPR多发性骨髓瘤、前列腺癌和β-地中海贫血融资5400万美元
LogicBio
Therapeutics
2016年美国Tomer Kariv和Mark Kay腺病毒AAV儿童遗传性肝病融资4900万美元
Cellectis2000年法国Andre Choulika等TALEN癌症纳斯达克上市 欧交所上市
Agenovir2014年美国Stephen QuakeCRISPR-cas9宫颈癌 肛门癌 疣 巨细胞病毒和 Ebstein-Barr 病毒感染等融资上亿美元
eGenesis2015年美国George Church和杨璐菡CRISPR-cas9异体器官移植2017年3月获得3800万美元A轮融资,披露的总融资金额约4000万美元
Universal Cells2013年美国David Russell腺相关病毒rAAV异体器官移植
Horizon Discovery2007年英国Chris Torrance 和Alberto Bardelli腺相关病毒rAAV提供基因编辑细胞的技术服务多伦多上市
Synthego2012年美国Paul Dabrowski 和 Michael DabrowskiCRISPR-cas9基因编辑改进技术CRISPRevolution融资4980万美元
Benchling2012年美国Y Combinator孵化开发基因编辑
技术平台
生物技术平台的搜索工具融资1300万美元
Table 3 Overview of key international companies of gene editing technology
地区公司名称成立时间业务/研发方向备注
北京博雅辑因2015年基因改造细胞等技术服务获中国首个CRISPR专利授权
赛贝生物2013年结合干细胞技术与基因编辑技术,及配套产品及技术服务
合生基因2014年基因编辑技术服务与科研产品
上海捷易生物2010年基因编辑技术与平台服务、模型构建服务
伯豪生物2008年基因编辑技术服务
吉凯基因2002年基因编辑技术服务及配套产品
吉满生物2011年基因编辑技术全套服务
邦耀生物2013年基于基因编辑技术针对肿瘤和遗传性疾病的细胞疗法与基因疗法的研发与转化
正茂生物2010年基因编辑技术、动物模型构建等生物医学领域的高端科研服务
宇玫博生物2015年基因编辑技术服务及配套产品
广州赛业生物2006年基因编辑模式动物等前沿技术服务美国Cyagen旗下中国子公司
深圳精准医疗2015年基于基因编辑技术的原创生物药开发平台
劲嘉股份1996年基因编辑疗法开发
重庆高圣生物2013年基因工程药物开发
南京银河生物2010年基因编辑模式动物
德泰生物2013年基因编辑技术构建细胞系
金斯瑞2002年基因编辑产品与技术服务
剪刀手2016年生物技术开发、咨询、转让服务
吉锐生物2011年基因编辑技术服务与试剂盒等产品
苏州泓迅生物2013年合成生物学、DNA技术
杭州百格生物2014年基因编辑技术在医疗健康和现代农业领域的研究、转化和应用国内首家专注于基因编辑技术
的生物技术公司
合肥柯顿生物2015年恶性肿瘤的精准细胞免疫治疗技术、细胞基因编辑与敲除
济南维真生物2012年基因组学和分子生物学试剂
Table 4 Overview of key Chinese companies of gene editing technology
[1]   Jinek M,Chylinski K,Fonfara I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science,2012,337:816-821.
[2]   Cong L,Ran F A,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems.Science,2013,339(6121):819-823.
doi: 10.1126/science.1229223
[3]   Komor A C,Kim Y B,Packer M S,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature,2016,7630(533):420-424.
[4]   Gaudelli N M,Alexis C.Komor,Holly A.Rees,et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage.Nature,2017,551:464-471.
[5]   Cox D B T,Gootenberg J S, Abudayyeh O O, et al.RNA editing with CRISPR-Cas13.Science,2017, 358(6366) :1019-1027.
doi: 10.1126/science.aaq0180 pmid: 29070703
[6]   Li X S, Wang Y, Liu Y J, et al.Base editing with a Cpf1-cytidine deaminase fusion.Nature Biotechnology,2018,36:324-327.
[7]   Wang X,Li J N,Wang Y,et al.Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion.Nature Biotechnology,2018.08.20 (Online).
doi: 10.1038/nbt.4198
[8]   Charlesworth C T,Deshpande P S,Dever D P,et al.Identification of pre-existing adaptive immunity to Cas9 proteins in humans.BioRxiv, 2018,36:946-949
[9]   Haapaniemi E,Botla S,Persson J,et al.CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.Nature Medicine,2018,24:927-930.
doi: 10.1038/s41591-018-0049-z pmid: 29892067
[10]   Ihry R J,Worringer K A,Salick M R,et al.p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.Nature Medicine,2018,24:939-946.
doi: 10.1038/s41591-018-0050-6 pmid: 29892062
[11]   Adikusuma F,Piltz S,Corbett M A,et al.Large deletions induced by Cas9 cleavage.Nature,2018,560:E8-E9.
doi: 10.1038/s41586-018-0380-z
[12]   Slaymaker I M,Gao L Y,Zetsche B,et al.Rationally engineered Cas9 nucleases with improved specificity.Science,2015,351(6268):84-88.
doi: 10.1126/science.aad5227 pmid: 4714946
[13]   Kleinstiver B P,Pattanayak V,Prew M S,et al.High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.Nature,2016,529:490-495.
[14]   Ran F A,Cong L,Yan W X,et al.In vivo genome editing using Staphylococcus aureus Cas9.Nature,2015,520:186-191.
[15]   Liao H K,Hatanaka F,Toshikazu Araoka,et al.In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation.Cell,2017,171(7):1497-1507.
doi: 10.1016/j.cell.2017.10.025 pmid: 29224783
[16]   Liu Y C,Zhan Y H,Chen Z C,et al.Directing cellular information flow via CRISPR signal conductors. Nature Methods, 2016,13:938-944.
doi: 10.1038/nmeth.3994 pmid: 27595406
[17]   Zuo E W,Huo X N,Yao X,et al.CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biology, 2017,18:224.
doi: 10.1186/s13059-017-1354-4 pmid: 29178945
[18]   Zetsche B,Gootenberg J S,Abudayyeh O O,et al.Cpf1 is a single RNA-Guided endonuclease of a class 2 CRISPR-Cas system.Cell,2015,163(3):759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[19]   Burstein D,Harrington L B,Strutt S C,et al.New CRISPR-Cas systems from uncultivated microbes.Nature,2017,542:237-241.
doi: 10.1038/nature21059 pmid: 28005056
[20]   Abudayyeh O O,Gootenberg J S,Konermann S,et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.Science,2016,353(6299):aaf5573.
doi: 10.1126/science.aaf5573 pmid: 27256883
[21]   Smargon A A,Cox D B T,Pyzocha N K,et al.Cas13b is a type VI-B CRISPR-associated RNA-guided Rnase differentially regulated by accessory proteins Csx27 and Csx28.Molecular Cell,2017,65(4):618-630.
doi: 10.1016/j.molcel.2016.12.023 pmid: 5432119
[22]   Hu J H,Miller S M,Geurts M H,et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.Nature,2018,556:57-63.
doi: 10.1038/nature26155 pmid: 29512652
[23]   Konermann S,Lotfy P,Brideau N J,et al.Transcriptome engineering with RNA-Targeting type VI-D CRISPR effectors.Cell,2018,173(3):665-676.
doi: 10.1016/j.cell.2018.02.033 pmid: 29551272
[24]   Zetsche B,Heidenreich M,Mohanraju P,et al.Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array.Nature Biotechnology,2017,35(1):31-34.
doi: 10.1038/nbt.3737 pmid: 27918548
[25]   Liu L,Li X Y,Wang J Y,et al.Two distant catalytic sites are responsible for C2c2 RNase activities.Cell,2017,168:1-2.
[26]   Liu L,Li X Y,Ma J,et al.The molecular architecture for RNA-guided RNA cleavage by Cas13a.Cell,2017,170(4):714-726.
doi: 10.1016/j.cell.2017.06.050 pmid: 28757251
[27]   Levasseur A,Bekliz M,Chabrière E,et al.MIMIVIRE is a defence system in mimivirus that confers resistance to virophage.Nature,2016,531:249-252.
doi: 10.1038/nature17146 pmid: 26934229
[28]   Nishida K,Arazoe T,Yachie N,et al.Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems.Science,2016,353(6305):aaf8729.
[29]   Xu S,Cao S S,Zou B J,et al.An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease.Genome Biology,2016,17:186.
doi: 10.1186/s13059-016-1038-5 pmid: 27634179
[30]   Xu W,Liu Y C,Liu Y L,et al.Artificial small RNA for sequence specific cleavage of target RNA through RNase III endonuclease Dicer.Oncotarget,2016,7(34):54549-54554.
doi: 10.18632/oncotarget.9582 pmid: 27231846
[31]   Shan Q W,Wang Y P,Li J,et al.Targeted genome modification of crop plants using a CRISPR-Cas system.Nature Biotechnology,2013,31:686-688.
doi: 10.1038/nbt.2650 pmid: 23929338
[32]   Bassuk A G,Zheng Z,Li Y,et al.Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells.Scientific Reports,2016,6:19969.
doi: 10.1038/srep19969 pmid: 4728485
[33]   Nelson C E,Hakim C H,Ousterout D G,et al.In vivo genome editing improves muscle function in a mouse model of duchenne muscular dystrophy.Science,2016,351(6271):403-407.
[34]   Chen Z H,Yu Y P,Zuo Z H,et al.Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene.Nature Biotechnology,2017,35:543-550.
doi: 10.1038/nbt.3843 pmid: 28459452
[35]   Kaminski R,Chen Y L,Fischer T,et al.Elimination of HIV-1 genomes from human t-lymphoid cells by CRISPR/Cas9 gene editing.Scientific Reports,2016,6,Article number: 22555.
[36]   Yang L H,Zhou X Y,Gang Wang,et al.Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9.Science,2017,357(6357):1303-1307.
doi: 10.1126/science.aan4187 pmid: 28798043
[37]   Liang P P,Xu Y W,Zhang X Y,et al.CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.Protein & Cell,2015,6(5):363-372.
doi: 10.1007/s13238-015-0153-5 pmid: 25894090
[38]   Ma H,Marti-Gutierrez N,Sang-Wook P,et al.Correction of a pathogenic gene mutation in human embryos.Nature,2017,548:413-419.
doi: 10.1038/nature23305 pmid: 28783728
[39]   Niu Y Y,Shen B,Cui Y Q,et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos.Cell,2014,156(4):836-843.
doi: 10.1016/j.cell.2014.01.027
[1] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[2] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[3] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[4] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[5] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[6] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[7] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[8] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[9] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[10] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[11] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[12] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[13] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[14] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[15] GUO Jing,HOU Zhan-ming. Folpcs1 Is Responsible for Asexual Reproduction and Vegetative Growth in Fusarium oxysporum f. sp. Lini.[J]. China Biotechnology, 2020, 40(3): 48-64.