Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 87-95    DOI: 10.13523/j.cb.20191110
    
Advances of Gene Editing in Disease Treatment
YANG Chun-yan,WANG Lei,MU Deng-cai,LI Fang-fang,SHEN Hao,ZHENG Shang-yong()
School of Medicine, Yunnan University, Kunming 650091,China
Download: HTML   PDF(513KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Gene editing is a new technology of precise gene modification which provides a powerful tool for gene function analyses.Currently,these methods such as zinc-finger nuclease (ZFN),transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) are available for researchers to operate target genes. Also fields like gene function analyses and medical therapy have been innovated. The types and principles of gene editing technology are summarized.The research progress of CRISPR gene editing technology in the treatment of diseases was highlighted. In the end,the future research of gene editing technology is prospected.



Key wordsGene editing      CRISPR      ZFN      TALEN      Disease treatment     
Received: 03 April 2019      Published: 17 December 2019
ZTFLH:  Q354  
Corresponding Authors: Shang-yong ZHENG     E-mail: shangyong@ynu.edu.cn
Cite this article:

YANG Chun-yan,WANG Lei,MU Deng-cai,LI Fang-fang,SHEN Hao,ZHENG Shang-yong. Advances of Gene Editing in Disease Treatment. China Biotechnology, 2019, 39(11): 87-95.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191110     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/87

ZFN TALEN CRISPR/Cas9
DNA结合 锌指蛋白 TALE蛋白 指导RNA
DNA切割 Fok I Fok I Cas9
DNA识别范围 18~36bp 30~40bp 22bp
锌指模块 TALE模块 DNA-RNA碱基
识别序列
含有G碱基的序列如下:
5'-GNNGNNGNN-3'
从5'-T开始,
以A-3'结尾的序列
紧接着是相邻的原间隔基序
5'-NGG-3'
剪切位点 单次单个 单次单个 可同时剪切多个位点
优点 靶向结合的高效率
靶向传递基因效率高
蛋白质尺寸(<1kb)
高特异性
1bp的精确识别
相对容易选择目标区域
蛋白质尺寸(>3kb)
自由选择目标区域
指导RNA的简单合成
多路复用能力
靶向效率高
蛋白质尺寸(>3kb)
局限 难选序列
上下文依赖性
既昂贵又费时
脱靶效应
有毒副性
不适用于甲基
既昂贵又费时
脱靶低
低毒性
低通量
PAM序列依赖性
脱靶效应
嵌合体现象
低同源重组率
Table1 The difference between ZFN,TALEN,CRISPR/Cas9
Cas蛋白 CRISPR系统 指导RNA 目标识别序列
Cas9 II型 crRNA + tracrRNA G-rich PAM
dCas9 II型 crRNA + tracrRNA G-rich PAM
Cpf1(Cas12a) V型 crRNA T-rich PAM
C2c2(Cas13a) VI-A 型 crRNA + tracrRNA Except G-rich
Cas3 I型 crRNA T-rich PAM
dCas13a VI-A型 crRNA + tracrRNA Except G-rich
Cas13b Ⅵ-B型 crRNA PFS
Cas10(Csm1) III型 crRNA AT-rich PAM
Table 2 Differences of various Cas proteins
[1]   Prakash V, Moore M , Yanez-Munoz R J. Current progress in therapeutic gene editing for monogenic diseases. Mol Ther, 2016,24(3):465-474.
doi: 10.1038/mt.2016.5 pmid: 26765770
[2]   朱玉昌, 郑小江, 胡一兵 . 基因编辑技术的方法、原理及应用. 生物医学, 2015,5(3):32-41.
doi: 10.12677/HJBM.2015.53005
[2]   Zhu Y C, Zhen X J, Hu Y B . Methods, principles and applications of gene editing technology. Hans Journal of Biomedicine, 2015,5(3):32-41.
doi: 10.12677/HJBM.2015.53005
[3]   Cai M, Yang Y . Targeted genome editing tools for disease modeling and gene therapy. Curr Gene Ther, 2014,14(1):2-9.
doi: 10.2174/156652321402140318165450
[4]   Kc M, Steer C J . A new era of gene editing for the treatment of human diseases. Swiss Med Wkly, 2019,149:w20021.DOI: 10.4414/smw.2019.20021.
doi: 10.4414/smw.2019.20021 pmid: 30685869
[5]   Klug A . The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem, 2010,43(1):1-21.
doi: 10.1017/S0033583510000089 pmid: 20478078
[6]   Ji H Y, Lu P P, Liu B C , et al. Zinc-finger nucleases induced by HIV-1 tat excise HIV-1 from the host genome in infected and latently infected cells. Mol Ther-Nucl Acids, 2018,12:67-74.
doi: 10.1016/j.omtn.2018.04.014 pmid: 30195798
[7]   Miller J C, Tan S, Qiao G , et al. A tale nuclease architecture for efficient genome editing. Nat Biotechnol, 2011,29(2):143-148.
doi: 10.1038/nbt.1755 pmid: 21179091
[8]   Boch J, Bonas U . Xanthomonas avrbs3 family-type iii effectors: Discovery and function. Annu Rev Phytopathol, 2010,48(1):419-436.
doi: 10.1146/annurev-phyto-080508-081936 pmid: 19400638
[9]   Gaj T, Gersbach C A, Barbas C F . ZFN, talen, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013,31(7):397-405.
doi: 10.1016/j.tibtech.2013.04.004 pmid: 23664777
[10]   Zarei A, Razban V, Hosseini S E , et al. Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. J Gene Med, 2019,21:e3082. doi: 10.1002/jgm.3082.
doi: 10.1002/jgm.3082 pmid: 30786106
[11]   Kieckhaefer J E, Maina F, Wells R G , et al. Liver cancer gene discovery using gene targeting, sleeping beauty, and CRISPR/Cas9//Jordi B, Gregory J G. Seminars in Liver Disease. New York:Thieme Medical Publishers, 2019: 1-13.
[12]   Chylinski K, Le Rhun A, Charpentier E . The tracrrna and cas9 families of type ii CRISPR-Cas immunity systems. Rna Biol, 2013,10(5):726-737.
doi: 10.4161/rna.24321
[13]   蒋伟, 黎满香, 田世成 , 等. Crispr系统结构与功能研究进展. 动物医学进展, 2012,33(10):82-86.
[13]   Jiang W, Li M X, Tian S C , et al. Advances in the research on the structure and function of CRISPR system. Advances in Animal Medicine, 2012,33(10):82-86.
[14]   Shah S A, Erdmann S, Mojica F J , et al. Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biol, 2013,10(5):891-899.
doi: 10.4161/rna.23764
[15]   Charpentier E , Richter H, van der Oost J, et al. Biogenesis pathways of rna guides in archaeal and bacterial CRISPR-Cas adaptive immunity. Fems Microbiol Rev, 2015,39(3):428-441.
doi: 10.1093/femsre/fuv023 pmid: 25994611
[16]   Ricciardi A S, Quijano E, Putman R , et al. Peptide nucleic acids as a tool for site-specific gene editing. Molecules, 2018,23(3):632-647.
doi: 10.3390/molecules23030632 pmid: 29534473
[17]   Bahal R , Ali McNeer N, Quijano E, et al. In vivo correction of anaemia in beta-thalassemic mice by gammapna-mediated gene editing with nanoparticle delivery. Nat Commun, 2016,7(1):13304-13318.
doi: 10.1038/ncomms13304 pmid: 27782131
[18]   Rousseau B A, Hou Z G, Gramelspacher M J , et al. Programmable rna cleavage and recognition by a natural CRISPR-Cas9 system from neisseria meningitidis. Mol Cell, 2018,69(5):906-914.
doi: 10.1016/j.molcel.2018.01.025 pmid: 29456189
[19]   Bao Z H , HamediRad M, Xue P, et al. Genome-scale engineering of saccharomyces cerevisiae with single-nucleotide precision. Nature Biotechnology, 2018,36(6):505-508.
doi: 10.1038/nbt.4132 pmid: 29734295
[20]   Halperin S O, Tou C J, Wong E B , et al. Crispr-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature, 2018,560(7717):248-252.
doi: 10.1038/s41586-018-0384-8 pmid: 30069054
[21]   Wang H F, Xu X S, Nguyen C M , et al. CRISPR-mediated programmable 3d genome positioning and nuclear organization. Cell, 2018,175(5):1405-1418.
doi: 10.1016/j.cell.2018.09.013 pmid: 30318144
[22]   Gapinske M, Luu A, Winter J , et al. Crispr-skip: Programmable gene splicing with single base editors. Genome Biology, 2018,19(1):107-118.
doi: 10.1186/s13059-018-1482-5 pmid: 30107853
[23]   Ran F A, Hsu P D, Wright J , et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013,8(11):2281-2308.
doi: 10.1038/nprot.2013.143
[24]   Platt R J, Chen SD, Zhou Y , et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014,159(2):440-455.
doi: 10.1016/j.cell.2014.09.014
[25]   Mittal R D . Gene editing in clinical practice: Where are we. Indian J Clin Bioche, 2019,34(1):19-25.
doi: 10.1007/s12291-018-0804-4 pmid: 30728669
[26]   Ghosh D, Venkataramani P, Nandi S , et al. CRISPR-Cas9 a boon or bane: The bumpy road ahead to cancer therapeutics. Cancer Cell Int, 2019,19(1):12-22.
doi: 10.1016/j.yhbeh.2018.10.011 pmid: 30713102
[27]   Zhou Q, Derti A, Ruddy D , et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res, 2015,75(10):1949-1958.
doi: 10.1158/0008-5472.CAN-14-2930 pmid: 25788694
[28]   Choi P S, Meyerson M . Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun, 2014,5(1):3728-3734.
doi: 10.1038/ncomms4728 pmid: 24759083
[29]   Torres R, Martin M C, Garcia A , et al. Engineering human tumour-associated chromosomal translocations with the rna-guided CRISPR-Cas9 system. Nat Commun, 2014,5(1):3964-3972.
doi: 10.1038/s41467-018-06333-8 pmid: 30262834
[30]   Cho S W, Kim S, Kim J M , et al. Targeted genome engineering in human cells with the Cas9 rna-guided endonuclease. Nat Biotechnol, 2013,31(3):230-232.
doi: 10.1038/nbt.2507 pmid: 23360966
[31]   Wang H, Sun W . CRISPR-mediated targeting of her2 inhibits cell proliferation through a dominant negative mutation. Cancer Lett, 2017,385:137-143.
doi: 10.1016/j.canlet.2016.10.033 pmid: 27815036
[32]   Cheng B B, Yuan W E, Su J , et al. Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem, 2018,157:582-598.
doi: 10.1016/j.ejmech.2018.08.028 pmid: 30125720
[33]   Ren J T, Zhang X H, Liu X J , et al. A versatile system for rapid multiplex genome-edited Car t cell generation. Oncotarget, 2017,8(10):17002-17011.
doi: 10.18632/oncotarget.15218 pmid: 28199983
[34]   Manguso R T, Pope H W, Zimmer M D , et al. In vivo CRISPR screening identifies ptpn2 as a cancer immunotherapy target. Nature, 2017,547(7664):413.
doi: 10.1038/nature23270 pmid: 28723893
[35]   Conboy I, Murthy N, Etienne J , et al. Making gene editing a therapeutic reality. F1000 Research, 2018,7:1970.
doi: 10.12688/f1000research.16106.1 pmid: 30613384
[36]   Tabebordbar M, Zhu K , Cheng J K W, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016,351(6271):407-411.
doi: 10.1126/science.aad5177 pmid: 26721686
[37]   Nelson C E, Hakim C H, Ousterout D G , et al. In vivo genome editing improves muscle function in a mouse model of duchenne muscular dystrophy. Science, 2016,351(6271):403-407.
doi: 10.1126/science.aad5143 pmid: 26721684
[38]   Amoasii L , Hildyard J C W, Li H, et al. Gene editing restores dystrophin expression in a canine model of duchenne muscular dystrophy. Science, 2018,362(6410):86-90.
doi: 10.1126/science.aau1549 pmid: 30166439
[39]   Amoasii L, Long C Z, Li H , et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med, 2017, 9(418):eaan8081.
[40]   Chen Y C, Zheng Y H, Kang Y , et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet, 2015,24(13):3764-3774.
doi: 10.1093/hmg/ddv120 pmid: 25859012
[41]   Huai C, Jia C, Sun R , et al. CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia b mice. Hum Genet, 2017,136(7):875-883.
doi: 10.1007/s00439-017-1801-z pmid: 28508290
[42]   Ohmori T, Nagao Y, Mizukami H , et al. CRISPR/Cas9-mediated genome editing via postnatal administration of aav vector cures haemophilia b mice. Sci Rep, 2017,7(1):4159.
doi: 10.1038/s41598-017-04625-5 pmid: 28646206
[43]   Rangarajan S, Walsh L, Lester W , et al. Aav5-factor viii gene transfer in severe hemophilia a. N Engl J Med, 2017,377(26):2519-2530.
doi: 10.1056/NEJMoa1708483 pmid: 29224506
[44]   Chiuchiolo M J, Crystal R G . Gene therapy for alpha-1 antitrypsin deficiency lung disease. Annals of the American Thoracic Society, 2016,13(4):S352-S369.
doi: 10.1513/AnnalsATS.201506-344KV pmid: 27564673
[45]   Stephens C J, Kashentseva E, Everett W , et al. Targeted in vivo knock-in of human alpha-1-antitrypsin cdna using adenoviral delivery of CRISPR/Cas9. Gene Ther, 2018,25(2):139-156.
doi: 10.1038/s41434-018-0003-1 pmid: 29588497
[46]   Shen S, Sanchez M E, Blomenkamp K , et al. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Human Gene Therapy, 2018,29(8):861-873.
doi: 10.1089/hum.2017.227 pmid: 29641323
[47]   Tu Z C, Yang W L, Yan S , et al. CRISPR/Cas9: A powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener, 2015,10(1):35-43.
doi: 10.1186/s13024-015-0031-x pmid: 26238861
[48]   Jung Y W, Hysolli E, Kim K Y , et al. Human induced pluripotent stem cells and neurodegenerative disease: Prospects for novel therapies. Curr Opin Neurol, 2012,25(2):125-130.
doi: 10.1097/WCO.0b013e3283518226
[49]   Ross C A, Akimov S S . Human-induced pluripotent stem cells: Potential for neurodegenerative diseases. Hum Mol Genet, 2014,23(R1):R17-R26.
doi: 10.1093/hmg/ddu204 pmid: 24824217
[50]   Maruyama T, Dougan S K, Truttmann M C , et al. Corrigendum: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2016,34(2):210.
doi: 10.1038/nbt0216-210a pmid: 26849524
[51]   Kramer N J, Haney M S, Morgens D W , et al. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of c9orf72 dipeptide-repeat-protein toxicity. Nat Genet, 2018,50(4):603-612.
doi: 10.1038/s41588-018-0070-7 pmid: 29507424
[52]   Bezerra L M D . Global report: Unaids report on the global aids epidemic: 2010. Geneva Switzerland Unaids, 2012,27(7):553-556.
doi: 10.1002/jia2.25320 pmid: 31328445
[53]   Donahue D A, Wainberg M A . Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology, 2013,10(1):11.
doi: 10.1186/1742-4690-10-4
[54]   Saayman S, Ali S A, Morris K V , et al. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther, 2015,15(6):819-830.
doi: 10.1517/14712598.2015.1036736 pmid: 25865334
[55]   Zhu W, Lei R, Le Duff Y , et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology, 2015,12(1):22.
doi: 10.1186/s12977-015-0150-z pmid: 25808449
[56]   Ebina H, Misawa N, Kanemura Y , et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep, 2013,3(8):2510.
doi: 10.1038/srep02510 pmid: 23974631
[57]   Liao H K, Gu Y, Diaz A , et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun, 2015,6(1):6413-6423.
doi: 10.1038/ncomms7413 pmid: 25752527
[58]   Saha S K, Saikot F K, Rahman M S , et al. Programmable molecular scissors: Applications of a new tool for genome editing in biotech. Mol Ther Nucleic Acids, 2019,14:212-238.
doi: 10.1016/j.omtn.2018.11.016 pmid: 30641475
[59]   Hammoudi N, Ishikawa K, Hajjar R J . Adeno-associated virus-mediated gene therapy in cardiovascular disease. Curr Opin Cardiol, 2015,30(3):228-234.
doi: 10.1097/HCO.0000000000000159 pmid: 25783685
[60]   Chadwick A C, Musunuru K . CRISPR-Cas9 genome editing for treatment of atherogenic dyslipidemia. Arterioscl Throm Vas, 2018,38(1):12-18.
doi: 10.1161/ATVBAHA.117.309326 pmid: 28838920
[61]   Ran F A, Cong L, Yan W X , et al. In vivo genome editing using staphylococcus aureus Cas9. Nature, 2015,520(7546):186-198.
doi: 10.1038/nature14299 pmid: 25830891
[62]   Sabatine M S, Giugliano R P, Keech A C , et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. New Engl J Med, 2017,376(18):1713-1722.
doi: 10.1056/NEJMoa1615664 pmid: 28304224
[63]   Ma H, Marti-Gutierrez N, Park S W , et al. Correction of a pathogenic gene mutation in human embryos. Nature, 2017,548(7668):413-419.
doi: 10.1038/nature23305 pmid: 28783728
[64]   Ormond K E, Mortlock D P, Scholes D T , et al. Human germline genome editing. American Journal of Human Genetics, 2017,101(2):167-176.
doi: 10.1016/j.ajhg.2017.06.012 pmid: 28777929
[65]   Yin H, Song C Q, Suresh S , et al. Structure-guided chemical modification of guide rna enables potent non-viral in vivo genome editing. Nat Biotechnol, 2017,35(12):1179-1187.
doi: 10.1038/nbt.4005 pmid: 29131148
[66]   Zuris J A, Thompson D B, Shu Y , et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol, 2015,33(1):73-80.
doi: 10.1038/nbt.3081 pmid: 25357182
[67]   Wujin S, Wenyan J, Hall J M , et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angewandte Chemie, 2015,54(41):12029-12033.
doi: 10.1002/anie.201506030 pmid: 26310292
[68]   Zuris J A, Thompson D B, Shu Y , et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol, 2015,33(1):73-80.
doi: 10.1038/nbt.3081 pmid: 25357182
[69]   Lee K, Conboy M, Park H M , et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng, 2017,1(11):889-901.
doi: 10.1038/s41551-017-0137-2 pmid: 29805845
[70]   Carolina P, Daniela C, Francesco P , et al. Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells. Molecular Therapy the Journal of the American Society of Gene Therapy, 2015,23(2):352-362.
doi: 10.1038/mt.2014.193 pmid: 25270076
[71]   Kohn D B . Gene therapy for blood diseases. Curr Opin Biotechnol, 2018,60C:39-45.
doi: 10.1002/cbf.3466 pmid: 31833074
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] ZHAO Xia,ZHU Zhe,ZU Yao. tbx2b Affects Atrioventricular Canal Development in Zebrafish[J]. China Biotechnology, 2021, 41(8): 1-7.
[3] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[4] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[5] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[6] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[7] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[8] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[9] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[10] FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification[J]. China Biotechnology, 2020, 40(6): 84-92.
[11] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[12] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[13] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[14] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[15] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.