Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (7): 67-74    DOI: 10.13523/j.cb.20180709
    
Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV
Ya-fang LI1,2,Ying-hui ZHAO2,Sai-bao LIU1,2,Wei WANG2,Wei-jun ZENG1,2,Jin-quan WANG1,**(),Hong-yan CHEN2,**(),Qing-wen MENG2,**()
1 College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830000, China
2 State Key Laboratory of Veterinary Biotechnology,Heilongjiang Provincial Key Laboratory of Laboratory Animals and Comparative Medicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences,Harbin 150069, China
Download: HTML   PDF(1029KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The 5'regulation sequence of the chicken ovalbumin (ovalbumin, OV) gene is the preferred regulatory element for the development of poultry oviduct bioreactor. Using EGFP as reporter gene,the eukaryotic expression vector containing the OV promoter is constructed and effective promoter is screened by analyzing the expression of GFP in the primary cell cultures of chicken oviduct and CHO cell, OV promoter of 1.1kb is identified which is used for further experiments. A recombinant vector named pOV1.1k-HA to express HA protein of H5N1 subtype influenza virus is constructed. It is subsequently transfected into CHO cells, PCR and RT-PCR analysis of HA gene suggested that the vector could be delivered into CHO cells and then get them transcribed. The immunoreactivity and hemagglutination activity of HA protein are determined by Western blot and HA test. The 4-week-old SPF chickens are vaccinated with purified HA protein and boosts were conducted with the same dosage after two weeks. The HI antibody level is 6.3log2 of three weeks after the boost. All chickens are challenged with 106 EID50 of H5N1 virus ((A/Goose/Guangdong/1/96). The survival rate of all vaccinated chickens is 100% and that of control group is 0, also no detoxification in the vaccine group. It is indicated that complete protection is provided. Results show that the screened 1.1kb OV promoter could effectively drive the expression of HA protein and the expression of HA protein immunizing SPF chicken provided complete protection against avian influenza virus attack. The basis for the expression of protective antigens and precious drug proteins in the chicken oviduct bioreactor will be founded.



Key wordsChicken ovalbumin promoter      HA      Avian influenza virus      Immune protection      Oviduct bioreactor     
Received: 11 March 2018      Published: 13 August 2018
ZTFLH:  Q819  
Corresponding Authors: Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG     E-mail: wangjinquan163@163.com;chenhongyan@caas.cn;mqw@hvri.ac.cn
Cite this article:

Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV. China Biotechnology, 2018, 38(7): 67-74.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180709     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I7/67

Fig.1 Expression of recombinant vector in the primary cells of chicken oviduct(a)pOV1.1k-GFP (b)pOV2.7k-GFP (c)pOV3.0k-GFP (d)pcDNA6.2-GFP (e)Negative control (f)Bright field modality
Fig.2 GFP assays in transfected primary cell of chicken oviduct by flow cytometry (a)GFP was measured as positive rate of each group after transfection of 48h (b)GFP was measured as mean fluorescence intensity of each group after transfection of 48h; The data are means±SD of 3 independent assays
Fig.3 Expression of recombinant vector in CHO cells(a)pOV1.1k-GFP (b)pOV2.7k-GFP (c)pOV3.0k-GFP (d)pcDNA6.2-GFP (e)Negative control (f)Brightfield modality
Fig.4 GFP assays in transfected CHO cells by flow cytometry (a)GFP was measured as positive rate of each group after transfection of 48h (b)GFP was measured as mean fluorescence intensity of each group after transfection of 48h; The data are means±SD of 3 independent assays(*P<0.05)
Fig.5 Identification of recombinant plasmid by enzyme digestion M:DL15 000;1:pOV1.1k-HA of enzyme digestion;2:pOV1.1k-HA
Fig. 6 PCR,RT-PCR analysis of CHO cell M: DL5 000;1-2: pOV1.1k-HA;3-4:pOV1.1k-HA(screening by blasticidin);5: Negative control;GAPDH:GAPDH was used as internal
Fig.7 Analysis of HA protein expressed in CHO by SDS-PAGE (a) and Western blot (b) M:Standard quality of protein molecules;1:Untransfected CHO cell;2:pOV1.1k-HA transfected CHO cell;3:pOV1.1k-HA transfected CHO cell(screening by blasticidin)
组别 HI抗体(log2) 攻毒后排毒情况(lgEID50) 存活/总数
DPI=3 DPI=6
喉拭子 泄殖腔拭子 喉拭子 泄殖腔拭子
HA蛋白组 6.3±0.96 0/4 0/4 0/4 0/4 4/4
PBS组 - 4/4 4/4 / / 0/4
Table 1 HI antibody level after 3 weeks of the boost and HA protect SPF chicken against lethal challenge
[1]   Lillico S G , McGrew M J, Sherman A, et al. Transgenic chickens as bioreactors for protein-based drugs. Drug Discov Today, 2005,10(3):191-196.
doi: 10.1016/S1359-6446(04)03317-3 pmid: 15708533
[2]   Sheridan C . FDA approves ‘farmaceutical’ drug from transgenic chickens. Nature Biotechnology, 2016,34(2):117-119.
doi: 10.1038/nbt0216-117 pmid: 26849497
[3]   Sanders M M, Mcknight G S . Positive and negative regulatory elements control the steroid-responsive ovalbumin promoter. Biochemistry, 1988,27(17):6550-6557.
doi: 10.1021/bi00417a053 pmid: 3064812
[4]   Haecker S A, Muramatsu T, Sensenbaugh K R , et al. Repression of the ovalbumin gene involves multiple negative elements including a ubiquitous transcriptional silencer. Molecular Endocrinology, 1995,9(9):1113-1126.
[5]   杨鹏翔, 王曦晨, 王宇祥 , 等. 转基因鸡生物反应器载体的构建及其表达特性分析. 生物工程学报, 2011,27(8):1215-1224.
[5]   Yang P X, Wang X C, Wang Y X , et al. Construction and expression characterization of transgenic chicken bioreactor vector. Chinese Journal of Biotechnology, 2011,27(8):1215-1224.
[6]   Oishi I, Kim S, Yoshii K , et al. Cre-LoxP-regulated expression of monoclonal antibodies driven by an ovalbumin promoter in primary oviduct cells. BMC Biotechnology, 2011,11(1):1-8.
doi: 10.1186/1472-6750-11-1
[7]   Kodama D, Nishimiya D, Nishijima K , et al. Chicken oviduct-specific expression of transgene by a hybrid ovalbumin enhancer and the Tet expression system. Journal of Bioscience & Bioengineering, 2012,113(2):146-153.
[8]   Liu G L, Zhang F F, Shi J Z , et al. A subunit vaccine candidate derived from a classic H5N1 avian influenza virus in China protects fowls and BALB/c mice from lethal challenge. Vaccine, 2013,31(46):5398-5404.
doi: 10.1016/j.vaccine.2013.09.009
[9]   Meng Q W, Liu G L, Liu Y G , et al. A broad protection provided by matrix protein 2 (M2) of avian influenza virus. Vaccine, 2015,33(31):3758-3765.
doi: 10.1016/j.vaccine.2015.05.045 pmid: 26036948
[10]   Stadnicka K, Bodnar M, Marszałek A , et al. Efficient source of cells in proximal oviduct for testing non-viral expression constructs in the chicken bioreactor model and for other in vitro studies. Folia Biologica, 2016,64(1):37-46.
doi: 10.3409/fb64_1.37
[11]   Park H M, Okumura J, Muramatsu T , et al. Modulation of transcriptional activity of the chicken of albumin gene promoter in primary cultures of chicken oviduct cells: effects of putative regulatory elements in the 5'-flanking region. Biochem Mol Biol Int, 1995,36(4):811-816.
[12]   Palmiter R D, Sandgren E P, Avarbock M R , et al. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA, 1991,88(2):478-482.
doi: 10.1073/pnas.88.2.478
[13]   房浩霞, 王安平, 高波 , 等. 鸡卵清蛋白基因第一内含子和3'-调控区对外源基因表达的调控作用. 生物工程学报, 2008,24(2):333-338.
doi: 10.3321/j.issn:1000-3061.2008.02.028
[13]   Fang H, Wang A, Gao B , et al. The regulatory effect of the first intron and 3'-regulatory region of ovalbumin gene on transgene expression. Chinese Journal of Biotechnology, 2008,24(2):333-338.
doi: 10.3321/j.issn:1000-3061.2008.02.028
[14]   黄菁, 朱志伟, 陈晓宇 , 等. 鸡卵清蛋白基因调控序列的克隆与载体构建. 浙江农业学报, 2016,28(3):412-419.
doi: 10.3969/j.issn.1004-1524.2016.03.09
[14]   Huang J, Zhu Z W, Chen X Y , et al. Cloning and vector construction of chicken ovalbumin gene regulatory sequences. Acta Agriculturae Zhejiangensis, 2016,28(3):412-419.
doi: 10.3969/j.issn.1004-1524.2016.03.09
[15]   赵颖慧, 王伟, 李越 , 等. 1.1kb、2.7kb、3.0kb鸡输卵管组织特异性启动子的克隆及细胞评价. 中国家禽, 2014,36(9):6-11.
doi: 10.3969/j.issn.1004-6364.2014.09.003
[15]   Zhao Y H, Wang W, Li Y , et al. Cloning and evaluation of 1.1kb,2.7kb and 3.0kb of oviduct-specific promoter of chicken. China Poultry, 2014,36(9):6-11.
doi: 10.3969/j.issn.1004-6364.2014.09.003
[16]   Ochiai H, Park H M, Nakamura A , et al. Synthesis of human erythropoietin in vivo in the oviduct of laying hens by localized in vivo gene transfer using electroporation. Poultry Science, 1998,77(2):299-302.
doi: 10.1093/ps/77.2.299
[17]   Jayapal K P, Wlaschin K F, Hu W S , et al. Recombinant protein therapeutics from CHO cells - 20 years and counting. Chemical Engineering Progress, 2007,103(10):40-47.
doi: 10.1021/cen-v085n040.p035
[18]   逄越, 李庆伟 . 鸡卵清蛋白基因启动子调控GFP基因在鸡原代输卵管上皮细胞和中国仓鼠卵巢细胞的表达. 生物工程学报, 2005,21(1):154-158.
doi: 10.3321/j.issn:1000-3061.2005.01.028
[18]   Pang Y, Li Q W . GFP reporter gene under the direction of chicken ovalbumin gene promoter expressed in the CHO cell and in the primary cell cultures of chicken oviduct. Chinese Journal of Biotechnology, 2005,21(1):154-158.
doi: 10.3321/j.issn:1000-3061.2005.01.028
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] ZHU Jia-hao,CHEN Ting,XI Qian-yun. Research Progress on miR-146a Involved in Different Diseases[J]. China Biotechnology, 2021, 41(9): 64-70.
[3] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[4] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[5] WANG Shan,XUE Zheng-lian,SUN Jun-feng,WANG Fang,ZHOU Jian,LIU Yan,WANG Zhou. Effect of Salt-enhanced Culture on the Production of Neomycin by Streptomyces fradiae[J]. China Biotechnology, 2021, 41(7): 22-31.
[6] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[7] LI Zhi-gang,GU Yang,TAN Hai,ZHANG Zhong-hua,CHANG Jing-ling. Enhanced Cyclic Adenosine Monophosphate Fermentation Production by Aminophylline and Citrate Coupling Addition[J]. China Biotechnology, 2021, 41(7): 50-57.
[8] ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria[J]. China Biotechnology, 2021, 41(7): 91-98.
[9] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[10] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[11] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[12] ZHU Hang-zhi,JIANG Shan,CHEN Dan,LIU Peng-yang,WAN Xia. Improving the Biosynthesis of β-Carotene in Yarrowia lipolytica by Introducing an Artificial Isopentenol Utilization Pathway[J]. China Biotechnology, 2021, 41(4): 37-46.
[13] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[14] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[15] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.