Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (12): 72-78    DOI:
    
Yeast Extract Stimulates the Phase-shift in Cassava Based Bio-butanol Production
ZHENG Jun-ping, LI Zhi-gang, LI Xin, LI Le, SHI Zhong-ping
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(861KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cassava is very attractive in bio-butanol production for its natures of cheap, high productivity, and no competition with the foods for arable land. Cassava was used as the raw material to produce bio-butanol in a 7L static/anaerobic fermentor. The results indicated that, performance of cassava-based bio-butanol production was much lower than that of corn-based production in both traditional and extractive fermentations. The major problems include severe delay or complete failure in phases shifting from acidogenic phase into solventogenic phase, long fermentation time and low butanol productivity. The experimental results showed that adding 2.5g/L yeast extract when phases-shifting delay appeared, could stimulate solvents conversion from organic acids and shorten the phase-shifting time for about 10-30 hours. Under this condition and with traditional and extractive fermentation mode, final butanol concentration reached 12.95g/L and 29.81g/L respectively, and butanol productivity almost approached the equivalent levels when using corn as fermentation source.



Key wordsButanol      Fermentation      Yeast extract      Cassava      Corn     
Received: 03 August 2011      Published: 25 December 2011
ZTFLH:  Q935  
Cite this article:

ZHENG Jun-ping, LI Zhi-gang, LI Xin, LI Le, SHI Zhong-ping. Yeast Extract Stimulates the Phase-shift in Cassava Based Bio-butanol Production. China Biotechnology, 2011, 31(12): 72-78.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I12/72


[1] Zhu S, Wu C. Production of butanol in extractive fermentation system. Chem Eng, 1992, 30(6):12-14.

[2] Ezeji T C, Qureshi N, Blaschek H P. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping.Appl Microbiol Biotechnol, 2004, 63(6):653-658.

[3] 黄洁, 李开绵, 叶剑秋, 等.中国木薯产业化的发展研究与对策.中国农学通报,2006,22(5):421-426. Huang J, Li K M, Ye J Q, et al. Chin Agric Sci Bull, 2006, 22(5): 421-426.

[4] 沈兆兵, 杜风光, 史吉平, 等.薯类发酵生产丙酮丁醇及其工艺优化.化工进展, 2008,27(增刊):134-136. Shen Z B, Du F G, Shi J P, et al. Chem Ind Eng Pro, 2008, 27(Suppl):134-136.

[5] Durre P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol, 1998, 49:639-648.

[6] 孙志浩, 王舒, 吴燕. 固定化细胞连续发酵玉米粉生产丙酮丁醇的初步研究.工业微生物, 1987, 17(6):18-22. Sun Z H, Wang S, Wu Y. Ind Microbiol, 1987, 17(6): 18-22.

[7] 张龙云, 杨影, 史仲平.丁醇萃取发酵耦联生产改良型生物柴油过程的性能优化.生物工程学报,2008, 24(11): 1943-1948. Zhang L Y, Yang Y, Shi Z P. Chin J Biotechnol, 2008, 24(11):1943-1948.

[8] Hubert Bahl, Wolfram Andersch, Konstantin Braun, et al. Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Appl Microbiol Biotechnol, 1982, 14:17-20.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[3] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[4] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[5] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[6] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[7] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[8] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[9] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[10] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[11] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[12] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[13] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[14] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[15] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.