Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (7): 51-58    DOI: 10.13523/j.cb.2001011
    
Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens
YANG Na,WU Qun(),XU Yan()
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Center for Brewing Science and Enzyme Technology, Wuxi 214122, China
Download: HTML   PDF(1653KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Surfactin, as a green biosurfactant, can be widely applied in various fields. However, the severe foaming arising in the fermentation process obstructed the industrial production of surfactin. Therefore, different strategies were explored to solve this problem in a 7L bioreactor. The results showed that excessive addition of antifoam would inhibit microbial growth and increase the production costs. The surfactin yield were 1.42g/L and 1.96g/L by using organic silicon and soybean oil as antifoams, respectively. However, foam fractionation in a modified bioreactor was more economical and effective for controlling the foaming and separating surfactin in situ. After fermentation coupled with foam fractionation, the surfactin yield was 2.39g/L. Based on the strategy of foam fractionation, the surfactin yield increased to 3.45g/L after controlling pH at 7. Moreover, it increased to 5.07g/L after controlling pH at 7 and DO≥20%. Furthermore, the surfactin yield increased to 6.04g/L by coupling foam fractionation with the regulation of pH, DO, and feeding (a constant rate of 1.39ml/min), which was 4.25 times higher than using antifoam. An efficient strategy is provided to control the foaming during fermentation and increase the surfactin yield, which can promote the industrial production of surfactin.



Key wordsSurfactin      Foam fractionation      Coupling      Fermentation strategy     
Received: 02 January 2020      Published: 13 August 2020
ZTFLH:  Q185  
Corresponding Authors: Qun WU,Yan XU     E-mail: wuq@jiangnan.edu.cn;yxu@jiangnan.edu.cn
Cite this article:

YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens. China Biotechnology, 2020, 40(7): 51-58.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001011     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I7/51

Fig.1 Dynamic changes of fermentation process with addition of organic silicon (a)and soybean oil (b)
Fig.2 The schematic diagram of fermentation coupled with foam fractionation
Fig.3 The effects of foam fractionation on fermentation
Fig. 4 Foam fractionation coupled with pH controlling
Fig. 5 Foam fractionation coupled with pH and DO controlling
Fig.6 Foam fractionation coupled with pH controlling, DO controlling, and constant-speed feeding
[1]   Hadia N J, Ottenheim C, Li S, et al. Experimental investigation of biosurfactant mixtures of surfactin produced by Bacillus Subtilis for EOR application. Fuel, 2019,251:789-799. DOI: 10.1016/j.fuel.2019.03.111.
doi: 10.1016/j.fuel.2019.03.111
[2]   Najmi Z, Ebrahimipour G, Franzetti A, et al. In situ downstream strategies for cost-effective bio/surfactant recovery. Biotechnology and Applied Biochemistry, 2018,65(4):523-532.
doi: 10.1002/bab.1641 pmid: 29297935
[3]   Cochrane S A, Vederas J C. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Medicinal Research Reviews, 2016,36(1):4-31.
doi: 10.1002/med.21321 pmid: 24866700
[4]   Renterghem L V, Roelants S L K W, Baccile N, et al. From lab to market: an integrated bioprocess design approach for new-to-nature biosurfactants produced by Starmerella bombicola. Biotechnology and Bioengineering, 2018,115(5):1195-1206.
doi: 10.1002/bit.26539 pmid: 29288587
[5]   Liu W, Wu Z L, Wang Y J, et al. Recovery of isoflavones from the soy whey wastewater using two-stage batch foam fractionation. Industrial & Engineering Chemistry Research, 2013,52(38):13761-13767.
[6]   Jiang J J, Zu Y Q, Li X Y, et al. Recent progress towards industrial rhamnolipids fermentation: process optimization and foam control. Bioresource Technology, 2020,298:1-10. DOI: 10.1016/j.biortech.2019.122394.
doi: 10.1016/j.biortech.2019.122394
[7]   魏浩, 陆兆新, 吕凤霞, 等. Bacillus amyloliquefaciens ES-2 发酵产抗菌脂肽消泡剂的筛选及脂肽的提取和纯化. 中国生物工程杂志, 2011,31(2):85-90.
[7]   Wei H, Lu Z X, Lv F X, et al. The select ion of defoamer for the antmicrobial lipopeptide fermentation by Bacillus amyloliquefaciens ES-2 and extraction and purification of lipopeptide. China Biotechnology, 2011,31(2):85-90.
[8]   Li R, Zhang Y, Chang Y, et al. Role of foam drainage in producing protein aggregates in foam fractionation. Colloids Surf B Biointerfaces, 2017,158:562-568. DOI: 10.1016/j.colsurfb.2017.07.040.
doi: 10.1016/j.colsurfb.2017.07.040 pmid: 28746910
[9]   Chen C Y, Baker S C, Darton R C. Batch production of biosurfactant with foam fractionation. Journal of Chemical Technology and Biotechnology, 2006,81(12):1923-1931.
[10]   Huang D, Wu Z L, Liu W, et al. A novel process intensification approach of recovering creatine from its wastewater by batch foam fractionation. Chemical Engineering and Processing: Process Intensification, 2016,104:13-21.DOI: 10.1016/j.cep.2016.02.005.
doi: 10.1016/j.cep.2016.02.005
[11]   Díaz De Rienzo M A, Kamalanathan I D, Martin P J. Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation. Process Biochemistry, 2016,51(7):820-827.
doi: 10.1016/j.procbio.2016.04.007
[12]   Zhang D, Dong K, Xu D, et al. Process improvement for fermentation coupling with foam separation: a convenient strategy for cell recycle. Asia-Pacific Journal of Chemical Engineering, 2015,10(3):466-475.
[13]   Winterburn J B, Russell A B, Martin P J. Characterisation of HFBII biosurfactant production and foam fractionation with and without antifoaming agents. Applied Microbiology and Biotechnology, 2011,90(3):911-920.
doi: 10.1007/s00253-011-3137-2 pmid: 21311879
[14]   Mnif I, Ghribi D. Lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers, 2015,104(3):129-147.
doi: 10.1002/bip.22630 pmid: 25808118
[15]   Liu X Y, Ren B, Gao H, et al. Optimization for the production of surfactin with a new synergistic antifungal activity. [2012-05-18]. https://doi.org/10.1371/journal.pone.0034430.
[16]   Yeh M S, Wei Y H, Chang J S. Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochemistry, 2006,41(8):1799-1805.
[17]   Alonso S, Martin P J. Impact of foaming on surfactin production by Bacillus subtilis: Implications on the development of integrated in situ foam fractionation removal systems. Biochem Eng J, 2016,110:125-133.DOI: 10.1016/j.bej.2016.02.006.
doi: 10.1016/j.bej.2016.02.006
[18]   Silva M T S D, Soares C M F, Lima A S, et al. Integral production and concentration of surfactin from Bacillus sp. ITP-001 by semi-batch foam fractionation. Biochemical Engineering Journal, 2015,104:91-97.DOI: 10.1016/j.bej.2015.04.010.
doi: 10.1016/j.bej.2015.04.010
[19]   郅岩. 芽孢杆菌高效合成表面活性素的代谢机制及功能研究. 无锡:江南大学, 2017.
[19]   Zhi Y. Metabolic mechanism of highly-efficient biosynthesis of surfactin and its function. Wuxi:Jiangnan University, 2017.
[20]   Zhi Y, Wu Q, Xu Y. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. [2017-1-23]. https://www.nature.xilesou.top/articles/srep40976. .
[21]   Albalasmeh A A, Berhe A A, Ghezzehei T A. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 2013,97(2):253-261.
pmid: 23911443
[22]   曹家明. 消泡剂在生物发酵过程中的应用研究进展. 中国酿造, 2019,38(9):19-23.
[22]   Cao J M. Advances on the application of defoamers in biological fermentation. China Brewing, 2019,38(9):19-23.
[23]   Koch V, Ruffer H M, Schugerl K, et al. Effect of antifoam agents on the medium and microbial cells properties and process performance in small and large bioreactors. Process Biochemistry, 1995,30(5):435-446.
doi: 10.1016/0032-9592(94)00029-8
[24]   Cho J H, Kim Y B, Kim E K. Optimization of culture media for Bacillus species by statistical experimental design methods. Korean Journal of Chemical Engineering, 2009,26(3):754-759.
doi: 10.1007/s11814-009-0126-6
[25]   Davis D A, Lynch H C, Varley J. The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzyme and Microbial Technology, 2001,28(4-5):346-354.
pmid: 11240190
[1] MEI Yu-wei,YANG Zi-yun,YU Fan,LONG Xu-wei. Recent Progress on Fermentation and Antibacterial Applications of Surfactin[J]. China Biotechnology, 2020, 40(5): 105-116.
[2] Huan XU,Mei-ling ZHOU,Lin GE,Zhi-ming WANG. The Application of Human Serum Albumin in Protein and Peptide Drugs Half-life Extension[J]. China Biotechnology, 2019, 39(1): 82-89.
[3] Sheng-nan CHI,Zeng-lan LI,Chun ZHANG,Shuang YIN,Cui FENG,Qi WANG,Yong-dong LIU,Zhi-guo SU. Comparison of the Biological Activity of mPEG20k Modified and Transferrin Coupled Ciliary Neurotrophic Factor[J]. China Biotechnology, 2017, 37(12): 59-66.
[4] WANG Wei, LI Zhong-hai, LI Ji-li, ZENG Bo-quan. Optimization of Fermentation Process for Gibberellic Acid Production Coupling with Adsorptive Extraction by Macroporous Resin[J]. China Biotechnology, 2012, 32(11): 70-74.
[5] WANG Wei, LI Zhong-hai, LI Ji-li, ZENG Bo-quan. Optimization of Fermentation Process for Gibberellic Acid Production Coupling with Adsorptive Extraction by Macroporous Resin[J]. China Biotechnology, 2012, 32(11): 70-74.
[6] ZHANG Ye-ni LU Fu-ping . Cloning of the Phosphatidylserine Synthase Gene and its Secretive Expression in Bacillus subtilis[J]. China Biotechnology, 2008, 28(9): 56-60.
[7] . Bacillus natto TK-1产脂肽的纯化、抑菌活性及其表面活性剂特性的初步探讨[J]. China Biotechnology, 2008, 28(1): 44-48.