Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 88-94    DOI: 10.13523/j.cb.2007027
    
Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols
WANG Bao-shi1,TAN Feng-ling1,LI Lin-bo1,LI Zhi-gang1,MENG Li1,QIU Li-you2,ZHANG Ming-xia1,**()
1 School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding,Henan Institute of Science and Technology, Xinxiang 453003, China
2 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
Download: HTML   PDF(8358KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As a by-product of grain processing, bran phenolic substances have important nutritional characteristics and pharmacological effects. However, most phenols in bran exist in the form of binding state, with low biological accessibility. There is a challenge to realize the effective release of phenolic substances in bran and improve the bioavailability. The nutritional characteristics and existing forms of bran phenolic compounds, as well as the research progress of enzymatic degradation, microbial fermentation and other biological treatment strategies in improving the biological accessibility of phenols were reviewed. Explore the interaction and mechanism of the mixed strain system and the relationship between the structural changes of the pretreated bran and the degradation efficiency. All these researches will provide a theoretical basis for the high value-added utilization of bran and the development of related functional foods.



Key wordsBran      Enzymatic degradation      Mixed fermentation      Phenolic compounds      Bio-accessibility     
Received: 19 July 2020      Published: 14 January 2021
ZTFLH:  Q819  
Corresponding Authors: Ming-xia ZHANG     E-mail: zhangmingx@163.com
Cite this article:

WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols. China Biotechnology, 2020, 40(12): 88-94.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2007027     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/88

Fig.1 Metabolic intervention pathways of phenols in bran[4]
Fig.2 Promotion of enzymatic degradation on the release of ferulic acid from wheat bran
Fig.3 Pretreatment technology coupled with microbial mixed fermentation drives the release of bran polyphenols
[1]   Wu X, Li F, Wu W. Effects of rice bran rancidity on the oxidation and structural characteristics of rice bran protein. Lwt-Food Science and Technology, 2020,120:108943.
[2]   Liu J, Yu L L, Wu Y. Bioactive components and health beneficial properties of whole wheat foods. Journal of Agricultural and Food Chemistry, 2020. DOI: 10.1021/acs.jafc.0c00705.
doi: 10.1021/acs.jafc.0c00705 pmid: 33405917
[3]   Zhang F, He F, Li L, et al. Bioavailability based on the gut microbiota: a new perspective. Microbiology and Molecular Biology Reviews, 2020,84(2).DOI: 10.1128/MMBR.00072-19.
doi: 10.1128/MMBR.00072-19 pmid: 32132243
[4]   Patel S. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. Journal of Functional Foods, 2015,14:255-269.
doi: 10.1016/j.jff.2015.02.010
[5]   Kim K, Tsao R, Yang R, et al. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 2006,95(3):466-473.
doi: 10.1016/j.foodchem.2005.01.032
[6]   Wang Z, Li S, Ge S, et al. Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. Journal of Agricultural and Food Chemistry, 2020,68(11):3330-3343.
doi: 10.1021/acs.jafc.9b06574 pmid: 32092268
[7]   Shi J, Shan S, Zhou G, et al. Bound polyphenol from foxtail millet bran exhibits an antiproliferative activity in HT-29 cells by reprogramming miR-149-mediated aerobic glycolysis. Journal of Functional Foods, 2019,56:246-254.
doi: 10.1016/j.jff.2019.03.021
[8]   Shi J, Shan S, Li Z, et al. Bound polyphenol from foxtail millet bran induces apoptosis in HCT-116 cell through ROS generation. Journal of Functional Foods, 2015,17:958-968.
doi: 10.1016/j.jff.2015.06.049
[9]   Jakobek L, Matić P. Non-covalent dietary fiber:Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends in Food Science and Technology, 2019,83:235-247.
doi: 10.1016/j.tifs.2018.11.024
[10]   Coda R, Katina K, Rizzello C G. Bran bioprocessing for enhanced functional properties. Current Opinion in Food Science, 2015,1:50-55.
[11]   Acosta-Estrada B A, Gutierrez-Uribe J A, Serna-Saldivar S O. Bound phenolics in foods, a review. Food Chemistry, 2014,152:46-55.
doi: 10.1016/j.foodchem.2013.11.093 pmid: 24444905
[12]   Gunenc A, HadiNezhad M, Farah I, et al. Impact of supercritical CO2 and traditional solvent extraction systems on the extractability of alkylresorcinols, phenolic profile and their antioxidant activity in wheat bran. Journal of Functional Foods, 2015,12:109-119.
[13]   Antoniewicz M, Kraynie D, Laffend L, et al. Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metabolic Engineering, 2007,9(3):277-292.
doi: 10.1016/j.ymben.2007.01.003 pmid: 17400499
[14]   Moore J, Cheng Z, Su L, et al. Effects of solid-state enzymatic treatments on the antioxidant properties of wheat bran. Journal of Agricultural and Food Chemistry, 2006,54(24):9032-9045.
doi: 10.1021/jf0616715 pmid: 17117788
[15]   Napolitano A, Costabile A, Martin-Pelaez S, et al. Potential prebiotic activity of oligosaccharides obtained by enzymatic conversion of durum wheat insoluble dietary fibre into soluble dietary fibre. Nutrition, Metabolism and Cardiovascular Diseases, 2009,19(4):283-290.
doi: 10.1016/j.numecd.2008.07.005 pmid: 18805682
[16]   龚燕燕, 殷欣, 唐存多, 等. 宇佐美曲霉阿魏酸酯酶与木聚糖酶协同作用降解小麦麸皮制备阿魏酸. 中国生物制品学杂志, 2014,27(2):123-127.
[16]   Gong Y Y, Yin X, Tang C D, et al. Synergistic effect of feruloyl esterase and xylanase from Aspergillus usamii in preparation of ferulic acid by degradation of wheat bran. Chinese Journal of Biologicals, 2014,27(2):123-127.
[17]   Yu J, Vasanthan T, Temelli F. Analysis of phenolic acids in barley by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 2001,49(9):4352-4358.
doi: 10.1021/jf0013407 pmid: 11559137
[18]   Xue Y, Cui X, Zhang Z, et al. Effect of beta-endoxylanase and alpha-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans. Food Chemistry, 2020,302:125332.
doi: 10.1016/j.foodchem.2019.125332 pmid: 31404871
[19]   Ferri M, Happel A, Zanaroli G, et al. Advances in combined enzymatic extraction of ferulic acid from wheat bran. New Biotechnology, 2020,56:38-45.
doi: 10.1016/j.nbt.2019.10.010 pmid: 31731038
[20]   杜小燕. 泡盛曲霉发酵麦麸过程中酚类物质含量的变化与生物活性的相关性研究. 广州: 华南理工大学, 2014.
[20]   Du X Y. Study on correlations between contents of phenolic compounds of wheat bran fermented by Aspergillus awamori and activities of three types of enzyme and biological activities. Guangzhou: South China University of Technology, 2014.
[21]   Ferri M, Serrazanetti D I, Tassoni A, et al. Improving the functional and sensorial profile of cereal-based fermented foods by selecting Lactobacillus plantarum strains via a metabolomics approach. Food Research International, 2016,89:1095-1105.
[22]   Klempova T, Slany O, Sismis M, et al. Dual production of polyunsaturated fatty acids and beta-carotene with Mucor wosnessenskii by the process of solid-state fermentation using agro-industrial waste. Journal of Biotechnology, 2020,311:1-11.
pmid: 32057783
[23]   Adebo O A, Gabriela Medina-Meza I. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 2020,25(4). DOI: 10.3390/molecules25040927.
doi: 10.3390/molecules25040927 pmid: 32102298
[24]   Wang M, Lei M, Samina N, et al. Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran. Food Chemistry, 2020,330:127156.
doi: 10.1016/j.foodchem.2020.127156 pmid: 32531631
[25]   Spaggiari M, Ricci A, Calani L, et al. Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. LWT - Food Science and Technology, 2020,118:108668.
[26]   Mao M, Wang P, Shi K, et al. Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran. Journal of Cereal Science, 2020,94:102997.
[27]   姚芳, 肖香, 董英. 大麦乳酸菌发酵液粉中多酚的提取及其抗氧化性研究. 食品工业科技, 2017,38(10):211-216.
[27]   Yao F, Xiao X, Dong Y. Extraction and antioxidant activity of polyphenols from barley lactobacillus fermented solution. Science and Technology of Food Industry, 2017,38(10):211-216.
[28]   Xiao Y, Xiong T, Peng Z, et al. Correlation between microbiota and flavours in fermentation of Chinese Sichuan Paocai. Food Research International, 2018,114:123-132.
doi: 10.1016/j.foodres.2018.06.051 pmid: 30361008
[29]   Liu G, Qu Y. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnology Advances, 2019,37(4):519-529.
pmid: 30576717
[30]   Yin Z N, Wu W J, Sun C Z, et al. Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger. Biomedical and Environmental Sciences, 2019,32(1):11-21.
doi: 10.3967/bes2019.002 pmid: 30696535
[31]   胡博涵. 利用发酵法释放麦麸中束缚型酚酸及其抗氧化活性的研究. 广州: 华南理工大学, 2015.
[31]   Hu B H. Using fermentation release type bound phenolic acids in the wheat bran and its antioxidant activity. Guangzhou: South China University of Technology, 2015.
[32]   诸葛斌, 刘俊, 方慧英, 等. 混菌发酵改良棉粕蛋白工艺及协同作用研究. 中国生物工程杂志, 2011,31(9):62-68.
[32]   Zhu G B, Liu J, Fang H Y, et al. Optimization of mixed fermentation on cottonseed meal and research on the synergistic effect of B. subtilis H1 and A. niger P1. China Biotechnology, 2011,31(9):62-68.
[33]   刘燕. 双菌发酵燕麦改善多酚抗氧化活性及其体外消化特性. 广州: 华南理工大学, 2019.
[33]   Liu Y. Improving phenolic bioactivity in double-strain fermented oats and their characteristics in vitro digestion. Guangzhou: South China University of Technology, 2019.
[34]   Bhanja T, Kumari A, Banerjee R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresource Technology, 2009,100(11):2861-2866.
pmid: 19232489
[35]   Xie C Y, Gu Z X, You X J, et al. Screening of edible mushrooms for release of ferulic acid from wheat bran by fermentation. Enzyme and Microbial Technology, 2010,46(2):125-128.
doi: 10.1016/j.enzmictec.2009.10.005
[36]   Tu J, Zhao J, Liu G, et al. Solid state fermentation by Fomitopsis pinicola improves physicochemical and functional properties of wheat bran and the bran-containing products. Food Chemistry, 2020,328:127046.
doi: 10.1016/j.foodchem.2020.127046 pmid: 32470773
[37]   Abd Razak D L, Abd Rashid N Y, Jamaluddin A, et al. Enhancement of phenolic acid content and antioxidant activity of rice bran fermented with Rhizopus oligosporus and Monascus purpureus. Biocatalysis and Agricultural Biotechnology, 2015,4(1):33-38.
doi: 10.1016/j.bcab.2014.11.003
[38]   Chen C, Wang L, Wang R, et al. Ultrasound-assisted extraction from defatted oat (Avena sativa L.) bran to simultaneously enhance phenolic compounds and β-glucan contents: Compositional and kinetic studies. Journal of Food Engineering, 2018,222:1-10.
doi: 10.1016/j.jfoodeng.2017.11.002
[39]   Zhao Z M, Wang L, Chen H Z. Physical structure changes of solid medium by steam explosion sterilization. Bioresource Technology, 2016,203:204-210.
doi: 10.1016/j.biortech.2015.12.043 pmid: 26724552
[40]   Li W, Zhang X, He X, et al. Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics. Food and Function, 2020,11(5):4648-4658.
doi: 10.1039/d0fo00493f pmid: 32401260
[41]   Anson N M, Selinheimo E, Havenaar R, et al. Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. Journal of Agricultural and Food Chemistry, 2009,57(14):6148-6155.
doi: 10.1021/jf900492h pmid: 19537710
[42]   Kong F, Wang L, Gao H, et al. Process of steam explosion assisted superfine grinding on particle size, chemical composition and physico-chemical properties of wheat bran powder. Powder Technology, 2020,371:154-160.
doi: 10.1016/j.powtec.2020.05.067
[43]   Dzah C S, Duan Y, Zhang H, et al. Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends in Food Science and Technology, 2020,99:375-388.
doi: 10.1016/j.tifs.2020.03.003
[1] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[2] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[3] HU Yan,LI Hui,HE Cheng-wen,ZHU Jing,XIE Zhi-ping. Construction of a Yeast Strain for the Evaluation of Subcellular Fractionation[J]. China Biotechnology, 2020, 40(10): 10-23.
[4] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[5] WANG Yan-hong,LIU Yan-shuang,SHI De-xi,ZHU Bao-guo,LV Bao-lei,FU Shi-yu,XU Miao,WANG We,YIN Kui-de. Functional Identification of Na +/H + Antiporter in Novel YdjM Superfamily Members[J]. China Biotechnology, 2018, 38(12): 32-40.
[6] WANG Ming-xuan, CHEN Hai-qin, GU Zhen-nan, CHEN Wei, CHEN Yong-quan. Expression, Purification of Mortierella alpina Δ9 Desaturase and Characterization of Its Cytochrome b5 Domain[J]. China Biotechnology, 2017, 37(3): 43-50.
[7] GUO Zheng-rong, PENG Huan-yan, KANG Ji-wen, JIANG Hui-qing, SUN Dian-xing. Cell Penetrating Peptides: Research Progress of a Novel Non-viral Vectors[J]. China Biotechnology, 2016, 36(6): 100-106.
[8] XUAN Huan-ling, LI Jing, LUO Feng, DAI Xian-zhu. In vitro Refolding of an Outer Membrane Protein from a Psychrotrophic Shewanella sp.[J]. China Biotechnology, 2016, 36(3): 61-67.
[9] LI Chen, GU Hua, GUO Jia, SUN Hui, HUANG Jing-wei, JIANG Ming, JIN Ling-jing, FANG Jian-min. Expression of Tat-MANF Fusion Protein and Its Bioactivity Analysis[J]. China Biotechnology, 2014, 34(06): 7-15.
[10] CAI Jing-jing, DUAN Xue-hui, XIE Liang, ZHENG Xi-fang, SHEN Jiang-tao. Production of Cellulases by Solid State Fermentation with Three Strains Mixed[J]. China Biotechnology, 2013, 33(7): 57-63.
[11] DONG Xiang-mei, SUN Ji-chang, LIU Chun-mei, ZHONG Zi-qing, LAI Wei-hua, WEI Hua, XIONG Yong-hua. Preparation and Characterization of Monoclonal Antibody of Listeria monocytogenes[J]. China Biotechnology, 2013, 33(5): 56-61.
[12] XIONG Long-bin, ZENG Hong-yan, HE Ping, TAN Yi-zhe, LIU Xue-ying, ZHANG Cun-ying, CAI Xi-ling. Asymmetric Reduction of 2-Octanone with the Yeast Carried on Macromolecule Membrane[J]. China Biotechnology, 2013, 33(2): 47-53.
[13] ZHANG Zheng-yu, WU Mian-bin. Recent Advances in Separation and Purification of Antibiotics[J]. China Biotechnology, 2012, 32(6): 98-103.
[14] ZHU Fu-xiang, LIU Ze-long, MIAO Jing, QU Hui-ge, CHI Xiao-yan. Propeptide-deleted von Willebrand Factor Improves Heavy Chain Secretion and Bioactivity by Split FVIII Gene Co-transfected Cells[J]. China Biotechnology, 2012, 32(07): 20-25.
[15] CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide[J]. China Biotechnology, 2012, 32(05): 97-106.