Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (7): 24-31    DOI: 10.13523/j.cb.20190704
    
Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis
Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU()
1 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, International Joint Laboratory on Food Safety, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(876KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A cellobiose 2-epimerase gene ce derived from Dictyoglomus thermophilum was synthesized and introduced into the expression vector pBSuL3 to construct a recombinant plasmid pBSuL3-ce and then transformed it into Bacillus subtilis. The intracellular activity of cellobiose epimerase reached 7.5U/ml after cultivated in TB culture for 48h. The enzymatic properties showed that the optimum pH of the enzyme was 8.5;the optimum temperature was 85℃, and the half-life of 85℃was 120min. In order to reduce the cost of fermentation, the fermentation medium was optimized.When 35g/L soybean meal was used as nitrogen source and 5g/L glycerin was used as carbon source, the intracellular activity reached 12.3U/ml. Then, according to the optimized condition of the shake flask, the culture was expanded in the 3L fermenter, and the intracellular activity of cellobiose epimerase reached 56U/ml, which was 8-fold higher than that of the shake flask culture.The lactulose was prepared by using the enzyme obtained by fermentation. When the lactose concentration was 400g/L, the reaction temperature was 85℃, the initial pH was 8.5, the enzyme amount was 20U/ml, the enzyme converted lactose to 51% lactulose.



Key wordsDictyoglomus thermophilum      Cellobiose 2-epimerase      Bacillus subtilis      Enzymatic properties      Fermentation optimization     
Received: 29 December 2018      Published: 05 August 2019
ZTFLH:  Q819  
Corresponding Authors: Jing WU     E-mail: jingwu@jiangnan.edu.cn
Cite this article:

Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis. China Biotechnology, 2019, 39(7): 24-31.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190704     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I7/24

Fig.1 Agarose gel electrophoresis analysis of CEase M:DL10000 DNA marker; 1:Expression vector pBSMuL3(7 987bp)and ce(1 167bp)
Fig.2 The SDS-PAGE analysis of CEase M:Protein MW marker;1:Intracellular enzyme
Fig.3 Purification of CEase M:Protein MW marker; 1-4:Purified protein
Fig.4 Optimum pH of the recombinant CEase
Fig.5 Optimum temperature of the recombinant CEase
Fig.6 Temperature stability of recombinant CEase
Fig.7 The HPLC analysis of enzyme conversion
Fig.8 Effects of the different nitrogen sources on cell growth and recombinant CEaase activity
氮源 浓度 OD600 酶活(U/ml)
15 9.02±0.2 6.77±0.2
豆粕粉 25 14.60±0.2 10.46±0.2
35 16.20±0.2 12.13±0.2
15 7.30±0.2 3.17±0.2
玉米浆 25 10.30±0.2 7.88±0.2
35 8.20±0.2 4.45±0.2
15 7.84±0.2 7.71±0.2
大豆蛋白胨 25 11.28±0.2 9.24±0.2
35 10.56±0.2 6.86±0.2
Table 1 Effects of complex nitrogen sources on cell growth and recombinant CEase activity
Fig.9 Effects of concentration of corn steep liquor and soya bean meal on cell growth(a) and CEaase activity(b)
大豆蛋白胨浓度
(g/L)
豆粕粉浓度
(g/L)
OD600 酶活(U/ml)
15 25 13.50±0.2 8.38±0.2
15 35 11.80±0.2 9.16±0.2
15 45 10.46±0.2 6.72±0.2
25 25 12.03±0.2 6.21±0.2
25 35 13.70±0.2 7.61±0.2
25 45 14.20±0.2 3.14±0.2
35 25 12.10±0.2 4.31±0.2
35 35 10.10±0.2 4.03±0.2
35 45 15.20±0.2 4.18±0.2
Table 2 Effects of complex nitrogen sources on cell growth and recombinant CEase activity
Fig.10 Effects of the different carbon sources on cell growth and recombinant CEaase activity
Fig.11 Effects of the concentration of carbon sources on cell growth and recombinant CEase activity
Fig.12 The cell growth and recombinant CEaase activity in 3L fermenter
[1]   薛晓舟, 黄锦, 林海龙 , 等. 乳果糖合成研究进展及其生理调节作用. 当代化工, 2016,45(10):2480-2484.
[1]   Xue X Z, Huang J, Lin H L , et al. Recent researches on lactulose synthesis and its application in physiological regulation. Contemporary Chemical Industry, 2016,45(10):2480-2484.
[2]   Kim Y S, Oh D K . Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresour Technol, 2012,104:668-672.
doi: 10.1016/j.biortech.2011.11.016
[3]   Krewinkel M, Kaiser J, Merz M , et al. Novel cellobiose 2-epimerases for the production of epilactose from milk ultrafiltrate containing lactose. J Dairy Sci, 2015,98(6):3665-3678.
doi: 10.3168/jds.2015-9411
[4]   Mayer J, Kranz B, Fischer L . Continuous production of lactulose by immobilized thermostable beta-glycosidase from Pyrococcus furiosus. J Biotechnol, 2010,145(4):387-393.
doi: 10.1016/j.jbiotec.2009.12.017
[5]   Schuster-Wolff-Bühring R, Fischer L, Hinrichs J . Production and physiological action of the disaccharide lactulose. International Dairy Journal, 2010,20(11):731-741.
doi: 10.1016/j.idairyj.2010.05.004
[6]   沈秋云 . 乳果糖制备用酶的构建及应用研究. 无锡:江南大学, 2015.
[6]   Shen Q Y . The construction and application of lactulose-producing enzymes. Wuxi:Jiangnan University, 2015.
[7]   Park C S, Kim J E, Choi J G , et al. Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Appl Microbiol Biotechnol, 2011,92(6):1187-1196.
doi: 10.1007/s00253-011-3403-3
[8]   Wu L, Xu C, Li S , et al. Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor. Bioresour Technol, 2017,233:305-312.
doi: 10.1016/j.biortech.2017.02.089
[9]   王贺 . 乳果糖制备用酶枯草芽孢杆菌芽孢表面展示系统的构建. 无锡:江南大学, 2013.
[9]   Wang H . Surface display of construction of lactulose preparatio enzymes on the Bacillus subtilis spores using crust protein as a carrier. Wuxi:Jiangnan University, 2013.
[10]   Kim J E, Kim Y S, Kang L W , et al. Characterization of a recombinant cellobiose 2-epimerase from Dictyoglomus turgidum that epimerizes and isomerizes beta-1,4- and alpha-1,4-gluco-oligosaccharides. Biotechnol Lett, 2012,34(11):2061-2068.
doi: 10.1007/s10529-012-0999-z
[11]   Shen Q, Zhang Y, Yang R , et al. Thermostability enhancement of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus by site-directed mutagenesis. Journal of Molecular Catalysis B:Enzymatic, 2015,120:158-164.
doi: 10.1016/j.molcatb.2015.07.007
[12]   Shen Q, Zhang Y, Yang R , et al. Enhancement of isomerization activity and iactulose production of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Food Chem, 2016,207:60-67.
doi: 10.1016/j.foodchem.2016.02.067
[13]   Vuolanto A, Weymarn N V, Kerovuo J , et al. Phytase production by high cell density culture of recombinant Bacillus subtilis. Biotechnology Letters, 2001,23(10):761-766.
doi: 10.1023/A:1010369325558
[14]   韩亮, 杨瑞金, 赵伟 . 纤维二糖差向异构酶在毕赤酵母中的表达及酶学性质研究. 工业微生物, 2016,46(1):16-21.
[14]   Hang L, Yang R J, Zhao W , et al. Expression of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus in pichia pastoris and its enzymatic characterization. Industrial Microbiology, 2016,46(1):16-21.
[15]   Ojima T, Saburi W, Sato H , et al. Biochemical characterization of a thermophilic cellobiose 2-epimerase from a Thermohalophilic bacterium, Rhodothermus marinus JCM9785. Biosci Biotechnol Biochem, 2011,75(11):2162-2168.
doi: 10.1271/bbb.110456
[16]   Sato H, Saburi W, Ojima T , et al. Immobilization of a thermostable cellobiose 2-epimerase from Rhodothermus marinus JCM9785 and continuous production of epilactose. Biosci Biotechnol Biochem, 2012,76(8):1584-1587.
doi: 10.1271/bbb.120284
[17]   Ito S, Taguchi H, Hamada S , et al. Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme. Appl Microbiol Biotechnol, 2008,79(3):433-441.
doi: 10.1007/s00253-008-1449-7
[18]   Kim J H, Yang Y K, Chambliss G H . Evidence that bacillus catabolite control protein ccpA interacts with RNA polymerase to inhibit transcription. Mol Microbiol, 2005,56(1):155-162.
doi: 10.1111/j.1365-2958.2005.04496.x
[1] LIANG Ai-ling,LIU Wen-ting,WU Pan,LI Qian,GAO Jian,ZHANG Jie,LIU Wei-dong,JIA Shi-ru,ZHENG Ying-ying. Characterization and Function of Key Amino Acids in Substrate Bingding Center of a Novel Zearalenone Hydrolase from Exophiala aquamarina[J]. China Biotechnology, 2021, 41(10): 19-27.
[2] Fei WANG,Chun-hui HU,hao YU. Catalytic Mechanism of 6-Hydroxynicotinic Acid 3-Monooxygenase (NicC)[J]. China Biotechnology, 2019, 39(7): 15-23.
[3] Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5): 72-79.
[4] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[5] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[6] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[7] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[8] Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis[J]. China Biotechnology, 2018, 38(4): 46-53.
[9] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[10] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[11] XIE Xi-zhen, LIN Juan, XIE Yong, YE Xiu-yun. Separation and Purification of Agarase and Study on Its Properties[J]. China Biotechnology, 2017, 37(1): 46-52.
[12] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[13] LIU Yang, YANG Ya-lin, ZHANG Yu-ting, RAN Chao, ZHOU Zhi-gang. Expression, Purification and Characterization of β-N-acetylglucosaminidase from Aeromonas veronii B565[J]. China Biotechnology, 2015, 35(2): 38-44.
[14] DUAN Shu-yan, GUO Huai-zu, LI Jing, ZHENG Juan, ZHAO Zi-ye, ZHANG Da-peng, WANG Hao. Cloning, Expression, Purification, and Characterization of Recombinant GluV8[J]. China Biotechnology, 2014, 34(4): 36-40.
[15] LIU Hui-li, LI Yuan-yuan, JU Rui-cheng, ZHAO Hong-tao, YANG Qing. Isolation, Identification and Fermentation Optimization of Antagonistic Bacillus subtilis KC-5[J]. China Biotechnology, 2014, 34(3): 96-102.