Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (3): 75-86    DOI: 10.13523/j.cb.20190310
    
Construction of Recombinant Bacillus subtilis as Catalyst for Preparing D- p-Hydroxyphenylglycine
Fa-bin LI,Lu LIU,Yan DU,Rui Ban()
1 School of Chemical Engineering and Technology, Key Laboratory of Systems Biotechnology of Ministry of Education,Tianjin University, Tianjin 300350, China
Download: HTML   PDF(1558KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To construct the recombinant Bacillus subtilis with D-hydantoinase(DHase, hyd ene) and D-carbamoylase(DCase, adc gene) activity as catalyst to produce D-p-hydroxyphenylglycine(D-HPG) by hydantoinase process. Methods: The hyd gene expression plasmids were constructed. The effects of divalent metal ions in medium on the DHase activity was investigated. The acoR gene was over-expressed to investigate the correlation between the activator protein AcoR and PacoA-hyd gene expression. The optimal promoter used to express adc gene was screened from the PAE, PspoVG, Pcdd and PlytR. The hyd and adc gene co-expression plasmid was constructed and its catalytic properties was characterized. Results: The hyd gene expression plasmid pHPS and pUBS were successfully constructed. Mn 2+ has a strong activation effect on DHase and the activity of the 168N/pUBS reached 956U/gDCW when 0.8mmol/L MnCl2·4H2O was added to the medium. Adding a copy of the Pcdd-acoR gene, DHase activity of the LSL02/pUBS reached 1 470 U/gDCW. The LN04 strain integrated with the PAE-adc had the highest DCase activity. The co-expression plasmid pUBSC was constructed, and under the optimum conditions of pH 8.0 and 40℃, with initial substrate concentration of 20g/L, the catalytic activity of LSL02/pUBSC could last for 12h to generate 14.32g/L of D-HPG with the conversion rate of 95%, yield of 82.4%. Conclusion: The recombinant strain with higher dual enzyme activity can be obtained when heterologous hyd and adc were expressed in Bacillus subtilis and it is technically feasible and has the application prospect for preparing D-HPG by hydantoinase process.



Key wordsBacillus      subtilis      Heterologous      expression      D-hydantoinase      D-carbamoylase      D-p-Hydroxyphenylglycine     
Received: 20 September 2018      Published: 12 April 2019
ZTFLH:  Q78  
Corresponding Authors: Rui Ban     E-mail: rbprofessor@163.com
Cite this article:

Fa-bin LI,Lu LIU,Yan DU,Rui Ban. Construction of Recombinant Bacillus subtilis as Catalyst for Preparing D- p-Hydroxyphenylglycine. China Biotechnology, 2019, 39(3): 75-86.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190310     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I3/75

Fig.1 The double-enzyme catalyzed reaction process of D-HPG produced by DL-HPH
Strains/plasmids Characteristics Source
Strains
B. subtilis 168 trpC2 Laboratory stock
B. subtilis 168N trpC2, ΔaraR∷Para-neo Laboratory stock
E. coli DH5α Host for shuttle plasmid construction Laboratory stock
B. subtilis BNAY6m trpC2, ΔaraR∷Para-neo, ΔnprE, ΔaprE, ΔyolA-yolB, ΔxynA, Δcsn,ΔyncM, Δpel Laboratory stock
B. subtilis LS10 B. subtilis 168N, ΔacoA∷PacoA-hyd This study
B. subtilis LSL10 B. subtilis LS10, ΔyolAsigL This study
B. subtilis LSL B. subtilis 168N, ΔyolAsigL This study
B. subtilis LSL11 B. subtilis LSL10, ΔsacBacoR This study
B. subtilis LSL12 B. subtilis LSL10, ΔsacB∷Pcdd-acoR This study
B. subtilis LSL13 B. subtilis LSL10, ΔsacB∷PAE-acoR This study
B. subtilis LSL01 B. subtilis LSL, ΔsacBacoR This study
B. subtilis LSL02 B. subtilis LSL, ΔsacB∷Pcdd-acoR This study
B. subtilis LSL03 B. subtilis LSL, ΔsacB∷PAE-acoR This study
B. subtilis LN01 B. subtilis 168N, Δpel∷Pcdd-adc This study
B. subtilis LN02 B. subtilis 168N, Δpel∷PspovG-adc This study
B. subtilis LN03 B. subtilis 168N, Δpel∷PlytR-adc This study
B. subtilis LN04 B. subtilis 168N, Δpel∷PAE-adc This study
pHP13 CmR, EmR in E. coli and B. subtilis Laboratory stock
pUB110 KmR, BlmR in B. subtilis Laboratory stock
pHG-sd1 AmpR,containing the hyd gene(Bacillus stearothermophilus SD-1) Laboratory stock
pHG-cdh AmpR,containing the adc gene(Agrobacterium sp. KNK712) Laboratory stock
pHPS pHP13 derivative, containing the hyd gene,downstream of the promoter PacoA This study
pUBS pUB110 derivative, containing the hyd gene,downstream of the promoter PacoA This study
pUBSC pUB110 derivative, containing the hyd and adc gene,downstream of the promoter PacoA and PAE respectively This study
Table 1 Strains and plasmids used in this study
Primer name Primer sequence (5'-3') Size(bp)
ASU1 ATCTCGTTTCGGGAAATTAC 20
ASU2 TCAGTCTTCTCATCTTCACT 20
Sd1 AGTGAAGATGAGAAGACTGA 20
Sd2 GCGACATCCTCACCGATCAACAATCACAATGGAGGACAAT 40
ASD1 TTGATCGGTGAGGATGTCGC 20
ASD2 ATGGGTGCTTTAGTTGAAGATTATCTGGTGTCGGCAAAT 39
CR1/ CR2 TCTTCAACTAAAGCACCCAT/TTATTCATTCAGTTTTCGTG 20/20
ASG1 CACGAAAACTGAATGAATAACACATTGCGGATCTTGATAA 40
ASG2 CCATCTCTTACATTCCTCCTT 21
PHSD1 CCCAAGCTTAACGGCACGATAGACTGTATG 30
PHSD2 CGGGATCCCAATCACAATGGAGGACAATATG 31
PURS1 AAAACTGCAGCAATCACAATGGAGGACAATATG 33
PURS2 AACGGCACGATAGACTGTATG 21
PUB1 CATACAGTCTATCGTGCCGTTAGTGCCGACCAAAACCATAAAAC 44
PUB2 AAAACTGCAGCAGCACAATTCCAAGAAAAACA 32
sacBU1 TCCTCATAGCCAAGAATCC 19
sacBU2 GCAATGTTTCCGATAAAGTCTGGTAGCCGTGATAGTT 37
PacoR1/ PacoR2 GACTTTATCGGAAACATTGC/AATAGGAACGCCGTTATATG 20/20
AP1/AP2 GACAAACATCACGCTCTTG/GTGTAAATTCCTCCCTTACCT 19/21
sacBUAE GATCAGTATATCACAGCGTTCTTGGTAGCCGTGATAGTT 39
sacBPAE1 AGAACGCTGTGATATACTGATC 22
sacBpAE2 CGTTTGGGACCGAGTTCATTCTTTACCCTCTCCTTTT 37
acoR1 ATGAACTCGGTCCCAAACG 19
sacBD1 CATATAACGGCGTTCCTATTTTGATCCTAACGATGTAACC 40
sacBG2 GGAGTCAGTGAACAGGTAC 19
pelU1/ pelU2 CGTTGTTATTCTGGCTTGAT/TGTTCCGCTATCCTATTGC 40
AP1s GCAATAGGATAGCGGAACAGACAAACATCACGCTCTTG 38
AP2s AAGTATCATCTGACGTGTCATGTGTAAATTCCTCCCTTACCT
spoVG1 GCAATAGGATAGCGGAACATGCGGAAGTAAACGAAGTG 38
spoVG2 GTGTACATTTCACCTCCTTTCTATATAAAAGCATTAGTGT 40
peladcA /peladcB ATGACACGTCAGATGATACTT/GCATCGTTTGACTGAATAGC 42
pelD1 TACCAAGGAGGAGTTATAGCGGATCAAGTGACAGCAA 37
pelG2 AGTTAGCACCGTTGGAAG 18
lytRU1/ lytRU2 CTACACTATCACTGACGCTAA/AAATTACTTTCATTATGAG 21/19
AEC1/ AEC2 AGAACGCTGTGATATACTGATC/GCATCGTTTGACTGAATAGC 22/20
PUBR1 CGGGATCCCAGCACAATTCCAAGAAAAACA 30
PUBC2 GATCAGTATATCACAGCGTTCTAGTGCCGACCAAAACCATAAAAC 45
adc1 AGAACGCTGTGATATACTGATC 22
cdh2 CATACAGTCTATCGTGCCGTTCGCTATAACTCCTCCTTGGTA 42
acoA1 AACGGCACGATAGACTGTATG 21
hyd2 CGGGATCCCAATCACAATGGAGGACAATATG 31
Table 2 Primers used in this study
Fig.2 The schematic of D-hydantoinase expression plasmids pHPS(a) and pUBS(b)
Fig.3 Chromatogram of solution before and after reaction (a) and SDS-PAGE analysis of intracellular proteins of recombinant strains(b) The blue and red line refer to the solution before and after reaction, respectively
Fig.4 The effects of divalent metal ions on D-hydantoinase activity The concentration gradient (mmol/L) of metal ions in medium is as follows: Fe2+ and Mn2+ , 0.2、0.4、0.6、0.8、1.0; Mg2+and EDTA , 2、4、6、8、10; Zn2+, 0.1、0.2、0.3、0.4、0.5
Strains(genotype) Ct(ccpA) Ct(acoR) ΔCt ΔΔCt 2-ΔΔCt
LSL(acoR) 27.63 24.14 -3.49
LSL01(2acoR) 28.26 23.69 -4.57 -1.08 2.11
LSL02(acoRc) 27.79 18.31 -9.48 -5.99 63.56
LSL03(acoRa) 28.66 16.93 -11.73 -8.24 302.33
Table 3 The transcription analysis of acoR using qRT-PCR
Fig.5 The relationship between the level of intracellular AcoR and the expression level of different copy number of PacoA-hyd
strains(genotype) Ct(ccpA) Ct(adc) ΔCt ΔΔCt 2-ΔΔCt
LN01(Pcdd-adc) 28.41 25.41 -3.00
LN02(PspoVG-adc) 28.42 22.83 -5.59 -2.59 6.02
LN03(PlytR-adc) 27.44 28.42 -1.94 1.06 0.48
LN04(PAE-adc) 29.05 20.13 -8.92 -5.92 60.55
Table 4 The transcription analysis of adc using qRT-PCR
Fig.6 The comparison of D-carbamoylase activity of different recombinant strains. LN01, LN02, LN03 and LN04 refer to the strain using promoter Pcdd, PspoVG, PlytR and PAE respectively
Fig.7 The schematic of recombinant plasmid pUBSC
Fig.8 The effects of components in medium on whole-cell catalytic activity. The SPM medium served as a control. The yeast powder and soy powder were replaced by yeast extract and tryptone, respectively, and glucose/glycerol was added into SPM medium
Fig.9 Time profiles of D-HPG concentrations
Fig.10 Chromatograms of solution at different reaction time at 40℃
Fig.11 The Catalytic reaction process of LSL02/pUBSC strain at different concentration of D, L-HPH
[1]   Nandanwar H S, Prajapati R, Hoondal G S .(D)-p-Hydroxyphenylglycine production by thermostable D-hydantoinase from Brevibacillus parabrevis-PHG1. Biocatalysis and Biotransformation, 2013,31(1):22-32.
doi: 10.3109/10242422.2012.755962
[2]   Runser S, Chinski N, Ohleyer E . D-p-Hydroxyphenylglycine production from dl-5-p-hydroxyphenylhydantoin by Agrobacterium sp. Applied Microbiology and Biotechnology, 1990,33(4):382-388.
doi: 10.1007/BF00176651
[3]   Clemente-Jiménez JM, Martínez-Rodríguez S, Rodríguez-Vico F , et al. Optically pure alpha-amino acids production by the “Hydantoinase Process”. Recent Patents on Biotechnology, 2008,2(1):35-46.
doi: 10.2174/187220808783330947
[4]   Drauz K, Gröger H, May O . Enzyme catalysis in organic synthesis. Russian Chemical Reviews, 2012,50(8):718.
[5]   梅艳珍, 何冰芳, 欧阳平凯 . 海因酶与氨甲酰水解酶产生菌的鉴定及分布. 微生物学通报, 2007,34(6):1104-1108.
doi: 10.3969/j.issn.0253-2654.2007.06.015
[5]   Mei Y Z, He B F, Ouyang P K . Identification and distribution of hydantoinase- and carbamoylase-producing bacteria. Microbiology China, 2007,34(6):1104-1108.
doi: 10.3969/j.issn.0253-2654.2007.06.015
[6]   Cheon Y H, Park H S, Kim J H , et al. Manipulation of the active site loops of d-hydantoinase, a (β/α)8-barrel protein, for modulation of the substrate specificity. Biochemistry, 2004,43(23):7413-7420.
doi: 10.1021/bi036330o
[7]   Cheon Y H, Park H S, Lee S C , et al. Structure-based mutational analysis of the active site residues of d -hydantoinase. Journal of Molecular Catalysis B Enzymatic, 2003,26(3-6):217-222.
doi: 10.1016/j.molcatb.2003.06.005
[8]   Cheon Y H, Kim H S, Han K H , et al. Crystal structure of D-hydantoinase from Bacillus stearothermophilus: Insight into the stereochemistry of enantioselectivity. Biochemistry, 2002,41(30):9410-9417.
doi: 10.1021/bi0201567
[9]   Lee S G, Lee D C, Kim H S . Purification and characterization of thermostable D-hydantoinase from thermophilic Bacillus stearothermophilus SD-1. Applied Biochemistry and Biotechnology, 1997,62(2):251-266.
doi: 10.1007/BF02788001 pmid: 9170256
[10]   Martínez-Rodríguez S , Martínez-Gómez A I, Rodríguez-Vico F . Carbamoylases: Characteristics and applications in biotechnological processes. Applied Microbiology and Biotechnology, 2010,85(3):441-458.
doi: 10.1007/s00253-009-2250-y pmid: 19830420
[11]   Nanba H, Ikenaka Y, Yamada Y , et al. Isolation of Agrobacterium sp. strain KNK712 that produces N-carbamyl-D-amino acid amidohydrolase, cloning of the gene for this enzyme, and properties of the enzyme. Bioscience Biotechnology and Biochemistry, 1998,62(5):875-881.
doi: 10.1271/bbb.62.875
[12]   Park J H, Kim G J, Kim H S . Production of D-amino acid using whole cells of recombinant Escherichia coli with separately and coexpressed D-hydantoinase and N-carbamoylase. Biotechnology Progress, 2000,16(4):564-570.
doi: 10.1021/bp0000611 pmid: 10933829
[13]   Zhang J, Cai Z . Efficient and cost-effective production of D-p-hydroxyphenylglycine by whole-cell bioconversion. Biotechnology and Bioprocess Engineering, 2014,19(1):76-82.
doi: 10.1007/s12257-013-0451-9
[14]   Hu X, Lin B . Efficient production of D-HPG with an immobilized transgenic strain LY13-05. Biotechnology and Biotechnological Equipment, 2015,29(5):1-8.
doi: 10.1080/13102818.2014.981368 pmid: 4433828
[15]   Jiang S, Li C, Zhang W , et al. Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Biochemical Journal, 2007,402(3):429-437.
doi: 10.1042/BJ20061457
[16]   Syldatk C, May O, Altenbuchner J , et al. Microbial hydantoinases-industrial enzymes from the origin of life. Applied Microbiology and Biotechnology, 1999,51(3):293-309.
doi: 10.1007/s002530051395
[17]   王亚盟,, 班睿,, 刘露 , 等. 异源D-海因酶和N-氨甲酰水解酶共表达重组枯草芽孢杆菌的构建. 微生物学报, 2017,57(1):54-65.
doi: 10.13343/j.cnki.wsxb.20160148
[17]   Wang Y M, Ban R, Liu L , et al. Construction of recombinant Bacillus subtilis by co-expression of heterologous D-hydantoinase and N-carbamoylase. Acta Microbiologica Sinica, 2017,57(1):54-65.
doi: 10.13343/j.cnki.wsxb.20160148
[18]   Shevchuk NA, Bryksin AV, Nusinovich YA , et al. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research, 2004,32(2):e19.
doi: 10.1093/nar/gnh014 pmid: 373371
[19]   Spizizen J . Transformation of Biochemically Deficient Strains of Bacillus subtilis by Deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America, 1958,44(10):1072-1078.
doi: 10.1073/pnas.44.10.1072 pmid: 16590310
[20]   Liu S, Endo K, Ara K . Introduction of marker-free deletions in Bacillus subtilis using the araR repressor and the ara promoter. Microbiology, 2008,154(9):2562-2570.
doi: 10.1099/mic.0.2008/016881-0 pmid: 18757790
[21]   Pfaffl M W . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001,29(9):2002-2007.
[22]   Wu S C, Wong S L . Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis. Journal of Biotechnology, 1999,72(3):185-195.
doi: 10.1016/S0168-1656(99)00101-7 pmid: 12680365
[23]   Silbersack J, Jürgen B, Hecker M , et al. An acetoin-regulated expression system of Bacillus subtilis. Applied Microbiology and Biotechnology, 2006,73(4):895-903.
doi: 10.1007/s00253-006-0549-5 pmid: 16944132
[24]   Kabisch J, Thürmer A, Hübel T , et al. Characterization and optimization of Bacillus subtilis ATCC 6051 as an expression host. Journal of Biotechnology, 2013,163(2):97-104.
doi: 10.1016/j.jbiotec.2012.06.034
[25]   Zhu H, Yang S M, Yuan Z M , et al. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis. Microbial Cell Factories, 2015,14(1):1-12.
doi: 10.1186/s12934-014-0183-3 pmid: 4335410
[26]   Yang S, Du G, Jian C , et al. Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis. Applied Microbiology and Biotechnology, 2017,101(10):4151-4161.
doi: 10.1007/s00253-017-8142-7 pmid: 28197687
[27]   Ali N O, Bignon J, Rapoport G , et al. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. Journal of Bacteriology, 2001,183(8):2497-2504.
doi: 10.1128/JB.183.8.2497-2504.2001 pmid: 11274109
[28]   Rappas M, Schumacher J, Beuron F . Structural insights into the activity of enhancer-binding proteins. Science, 2005,307(5717):1972-1975.
doi: 10.1126/science.1105932 pmid: 15790859
[29]   Zobel S, Kumpfmüller J, Schweder T , et al. Bacillus subtilis, as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Applied Microbiology and Biotechnology, 2015,99(2):681-691.
doi: 10.1007/s00253-014-6199-0 pmid: 25398283
[30]   Buson A, Negro A, Grassato L . Identification, sequencing and mutagenesis of the gene for a D-carbamoylase from Agrobacterium radiobacter. Fems Microbiology Letters, 2010,145(1):55-62.
[31]   Nakai T, Hasegawa T, Yamashita E , et al. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure, 2000,8(7):729-737.
doi: 10.1016/S0969-2126(00)00160-X pmid: 10903946
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[4] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[5] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[6] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[7] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[8] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[9] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[10] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[11] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[12] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[13] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[14] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[15] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.