Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (3): 65-74    DOI: 10.13523/j.cb.20190309
    
Preparation of Enrofloxacin Molecular Imprinting Electro- chemical Sensor and Its Application to Rapid Detection of Foods
Si-nan QIN,Lu-hua TANG,Wen-hui GAO()
College of Biological Science and Engineering, Hebei University of Science and Technology, Research Center for Fermentation Engineering of Hebei, Shijiazhuang 050000, China
Download: HTML   PDF(1721KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel molecular imprinted electrochemical sensor was prepared by electro-polymerization on the surface of a glassy carbon electrode in NaAc-HAc buffer solution, and enrofloxacin was used as template molecular, o-phenylenediamine (OPD) and o-aminophenol (OAP) as composite functional monomer. The sensor could specifically recognize the template molecules and its analogues. In the experiment, 1 mol/L KCl and 5 mmol/L K3[Fe(CN)6] was used as characterization solution, the electrochemical sensor response characteristics were researched, and the preparation and detection conditions of the sensor were optimized by square wave voltammetry (SWV) and cyclic voltammetry (CV). The results showed that under the optimal conditions, the linear relationship between SWV peak current difference and the concentrations of enrofloxacin was found in the range of 2×10 -6 mol/L4×10 -5 mol/L with the linear correlation coefficient ( R 2 ) of 0.9990, the detection limit was 7.0×10 -7mol/L, and the sensor had good stability, repeatability and good selectivity to enrofloxacin and its analogues. Enrofloxacin in real samples, such as milk, egg, chicken and pork, was detected by the developed sensor, the average recoveries were between 83.2% and 92.7%, and the relative standard deviations ( RSDs ) were 1.0%~4.8% ( n=5 ). This sensor is simple, sensitive, low cost, and has good selectivity and stability, which provide it a good application prospect.



Key wordsEnrofloxacin      Food      Molecular      imprinting      polymer      Electrochemical      sensor      Rapid      detection     
Received: 21 September 2018      Published: 12 April 2019
ZTFLH:  Q0631.3  
Corresponding Authors: Wen-hui GAO     E-mail: wenhuigao@126.com
Cite this article:

Si-nan QIN,Lu-hua TANG,Wen-hui GAO. Preparation of Enrofloxacin Molecular Imprinting Electro- chemical Sensor and Its Application to Rapid Detection of Foods. China Biotechnology, 2019, 39(3): 65-74.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190309     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I3/65

Fig.1 Enrofloxacin molecular structure
Fig.2 CV curves of enrofloxacin in sodium acetate buffer (pH = 5.2)
Fig.3 Electropolymerization curves of 15 mmol/L OPD/OAP in sodium acetate buffer (pH=5.2) (a) Template-free molecules ENRO (b) Template molecules ENRO
Fig.4 Electropolymerization curves of functional monomers in sodium acetate buffer (pH = 5.2) (a) OPD (b) OAP (c) RC (d) OPD/RC (e)0AP/RC
Fig.5 The optimization curve of polymerization ratio
Fig.6 Comparison of the polymerization of template molecule and functional monomer at the same concentration and ratio in PBS electrolyte (pH = 7.2) and NaAc-HAc electrolyte (pH = 5.2) (a) PBS(pH=7.2) (b) NaAc-HAc(pH=5.2)
Fig.7 Effect of the polymerization potential on the elution effect of template molecules (a)0V~0.8V (b)0V~1.0V (c)-0.2V~0.8V (d)-0.2V~1.0V (e)0V~1.2V
Fig.8 The selection of polymerization cycle number
Fig.9 Optimization of template molecule elution time
Fig.10 Optimization of template molecule adsorption time
Fig.11 CV curves of the different electrodes in characterizing solution
Fig.12 SWV curves of the different electrodes in characterization solution
Fig.13 Structural analogues and interfering substances molecular structure (a) Ciprofloxacin (b) Danofloxacin (c) Norfloxacin (d) Tetracycline
Fig.14 Selectivity of molecularly imprinted polymeric membrane electrode (a) Enrofloxacin (b) Ciprofloxacin (c) Danofloxacin (d) Norfloxacin (e) Tetracycline
Fig.15 Relationship curve between peak current difference ΔI and standard solution concentration
Fig.16 SWV curves of the different concentration enrofloxacin standard solution
不同添加水平
(mol/L)
鸡肉 猪肉 纯牛奶 鸡蛋
2×10-6 2×10-5 2×10-6 2×10-5 2×10-6 2×10-5 2×10-6 2×10-5
测定次数 回收率/%
1 82.2 79.7 86.5 89.7 88.6 82.4 91.5 79.3
2 82.8 84.8 89.0 88.2 95.2 92.8 92.9 85.6
3 81.0 86.6 88.2 89.1 91.5 84.5 93.9 83.4
4 83.9 88.0 86.8 92.7 86.9 90.3 92.8 82.6
5 88.2 82.5 88.5 86.8 88.9 88.0 92.2 84.9
平均回收率(%) 83.6 84.3 87.8 89.3 90.2 87.6 92.7 83.2
相对标准偏差RSD(%) 3.3 3.9 1.2 2.5 3.6 4.8 1.0 2.9
Table 1 Sample spike recovery and precision (n = 5)
[1]   Shlaes D M . Research and development of antibiotics: The next battleground. ACS Infectious Diseases, 2015,1(6):232-233.
doi: 10.1021/acsinfecdis.5b00048 pmid: 27622738
[2]   叶建美, 吴康, 吴洪丽 , 等. 恩诺沙星抗菌效果及药代动力学研究进展. 湖北农业科学, 2015,54(23):5813-5816.
doi: 10.14088/j.cnki.issn0439-8114.2015.23.005
[2]   Ye J M, Wu K, Wu H L , et al. Research progress of pharmacokinetics and pharmacodynamics of Enrofloxacin. Hubei Agricultural Sciences, 2015,54(23):5813-5816.
doi: 10.14088/j.cnki.issn0439-8114.2015.23.005
[3]   吕媛 . 氟喹诺酮类抗菌药(fluoroquinolones)研究进展//中国药理学会,第六届全国抗菌药物临床药理学术会议. 北京, 2006: 466-467.
[3]   Lv Y . Advances in research of fluoroquinolones//Chinese Pharmacological Society, The 6 th National Conference of Clinical Pharmaclogy on Antimicrobial Agents . Beijing, 2006: 466-467.
[4]   包晓丽 . 食品中喹诺酮类抗菌药的分析方法比较研究. 杭州: 浙江工商大学, 2009.
[4]   Bao X L . Comparative analysis of quinolone antibacterials in food. Hangzhou: Zhejiang Gongshang University, 2009.
[5]   Choksi P, Shaikh F, Shah D A , et al. Development of liquid chromatographic method for simultaneous determination of bromhexine hydrochloride and enrofloxacin in formulations. Indian Drugs, 2018,55(2):44-49.
[6]   Joshi H, Shah A, Patel J , et al. Development and validation of analytical method for simultaneous estimation of bromhexine HCl and enrofloxacine in combined pharmaceutical dosage form. Eurasian Journal of Analytical Chemistry, 2017,12(8):1631-1638.
doi: 10.12973/ejac.2017.00294a
[7]   刘亚梅, 闵盛 . 高效液相色谱法同时测定禽蛋中环丙沙星、达氟沙星和恩诺沙星的残留量. 理化检验(化学分册), 2016,52(3):305-307.
doi: 10.11973/lhjy-hx201603013
[7]   Liu Y M, Min S . Simultaneous determination of the residues of ciprofloxacin, danofloxacin and enrofloxacin in eggs by HPLC. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2016,52(3):305-307.
doi: 10.11973/lhjy-hx201603013
[8]   赵晶, 毕春娟, 陈振楼 , 等. 上海市崇明岛养殖场周边环境中氟喹诺酮类抗生素的含量特征. 生态与农村环境学报, 2017,33(2):120-126.
[8]   Zhao J, Bi C J, Chen Z L , et al. Contents of fluoroquinolone-type antibiotics in the surroundings of livestock farms in Chongming island of Shanghai. Journal of Ecology & Rural Environment, 2017,33(2):120-126.
[9]   Ho Y B, Zakaria M P, Latif P A , et al. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Science of the Total Environment, 2014, 488-489(1):261-267.
doi: 10.1016/j.scitotenv.2014.04.109
[10]   高文惠, 庞军, 王姣姣 , 等. 联苯三唑醇分子印迹电化学传感器的制备及识别性能研究. 现代食品科技, 2015, 31(1): 89,96-100.
[10]   Gao W H, Pang J, Wang J J , et al. Preparation and recognition properties of a bitertanol electrochemical sensor based on molecular imprinting technology. Modern Food Science and technology , 2015, 31(1): 89,96-100.
[11]   赵玲钰, 高林, 庞军 , 等. 胺菊酯分子印迹电化学传感器的制备及性能. 食品科学, 2017,38(8):283-289.
[11]   Zhao L Y, Gao L, Pang J , et al. Preparation and application of molecularly imprinted electrochemical sensor for the detection of tetramethrin and its performance. Food Science, 2017,38(8):283-289.
[12]   宫倩倩 . 吲哚乙酸分子印迹电化学传感器的研究. 无锡: 江南大学, 2012.
[12]   Gong Q Q . Indole acetic acid molecular imprinted electrochemical sensor research. Wuxi: Jiangnan University, 2012.
[13]   汤万进, 赵彤, 周春红 , 等. 复合功能单体法合成氧氟沙星分子印迹材料. 兰州大学学报(自然科学版), 2014(1):136-144.
doi: 10.3969/j.issn.0455-2059.2014.01.023
[13]   Tang W J, Zhao T, Zhou C H , et al. Preparation of a molecularly imprinted polymer of ofloxacin with combined functional monomers. Journal of Lanzhou university (natural sciences), 2014(1) : 136-144.
doi: 10.3969/j.issn.0455-2059.2014.01.023
[14]   高杨, 王伟, 刘英姿 , 等. 盐酸金霉素分子印迹电化学传感器的研制. 分析化学, 2015,43(2):212-217.
[14]   Gao Y, Wang W, Liu Y Z , et al. Development of molecularly imprinted electrochemical sensor for chlortetracycline hydrochloride. Analytical Chemistry, 2015,43(2):212-217.
[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[3] Bao-qi FENG,Jiao FENG,Miao ZHANG,Yang LIU,Rui CAO,Han-zhi YIN,Feng-xian QI,Zi-long LI,Shou-liang YIN. Screening of High Avermectin-producing Strains via Tn5 Transposon Mediated Mutagenesis[J]. China Biotechnology, 2021, 41(7): 32-41.
[4] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[5] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[6] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[7] LI Shuai-peng,REN He,AN Zhan-fei,YANG Yan-kun,BAI Zhong-hu. The Development of Chemiluminescence Immunoassay Detection Method for Thrombomodulin[J]. China Biotechnology, 2021, 41(4): 30-36.
[8] ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong,GE Sheng-xiang. Advances in Single Molecule Immunoassay[J]. China Biotechnology, 2021, 41(4): 47-54.
[9] LIAN Jiang-ru,MA Wei-fang. Advances in the Application of DNA Hydrogels to the Rapid Detection of Environmental Samples[J]. China Biotechnology, 2021, 41(2/3): 107-115.
[10] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[11] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[12] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[13] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[14] JIA Xiao-mei,NI Li,LUO Hong-yan,DING Hong-lei,WANG Hao-ju. Research Progress in Pasteurella Multocida Detection Technology[J]. China Biotechnology, 2020, 40(8): 49-54.
[15] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.