Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (8): 49-54    DOI: 10.13523/j.cb.2005020
    
Research Progress in Pasteurella Multocida Detection Technology
JIA Xiao-mei,NI Li,LUO Hong-yan,DING Hong-lei,WANG Hao-ju()
Laboratory of Veterinary Lemology, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Download: HTML   PDF(468KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Pasteurella multocida (Pm) is an important pathogen that causes respiratory diseases in pigs, which has brought huge economic losses to the world pig industry.Accurate, sensitive and rapid Pm detection method is helpful to understand the prevalence of Pm in clinical practice, so as to take corresponding prevention, treatment and comprehensive prevention and control measures.In this paper, the status, principles, advantages and disadvantages of the research on the etiology, molecular biology, immunology and molecular typing methods of Pm are reviewed in order to provide references for the further establishment of the standard detection methods of Pm.



Key wordsPasteurella multocida      Pathogen      Molecular biology      Molecular typing     
Received: 11 May 2020      Published: 10 September 2020
ZTFLH:  S852.62  
Corresponding Authors: Hao-ju WANG     E-mail: kyc_whj@swu.edu.cn
Cite this article:

JIA Xiao-mei,NI Li,LUO Hong-yan,DING Hong-lei,WANG Hao-ju. Research Progress in Pasteurella Multocida Detection Technology. China Biotechnology, 2020, 40(8): 49-54.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2005020     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I8/49

技术类型 目的基因 检测下限 参考文献
普通PCR kmt1 未提到 [17]
plpE 5个拷贝数 [18]
多重PCR kmt1toxAfla 1~10 pg DNA [19]
VFs靶蛋白 102 CFU/反应 [20]
荧光定量PCR toxA 1个基因拷贝 [21]
SodA 10个基因拷贝 [22]
LAMP kmt1 10 CFU/反应 [24]
PlpB 25 CFU/反应 [25]
基因芯片 pslkmt1 5 pg DNA [27]
Table 1 Comparison of various molecular biological detection techniques for Pasteurella multocida
[1]   Tarek A, Ahmad, Samar S, et al. Development of immunization trials against Pasteurella multocida. Vaccine, 2014,32(8):909-917.
doi: 10.1016/j.vaccine.2013.11.068
[2]   乔鹏芸. 猪源多杀性巴氏杆菌的分型及其毒力特性研究. 洛阳:河南科技大学, 2017.
[2]   Qiao P Y. Study on the genotyping and virulence characteristics of Pasteurella multocida. Luoyang: Henan University of Science and Technology, 2017.
[3]   黄全勇, 林文耀, 宋庆庆. 一起因管理不善引起猪群猪肺疫的案例. 吉林畜牧兽医, 2019,40(10):103-104.
[3]   Huang Q Y, Li W Y, Song Q Q. A case of swine lung disease caused by poor management. Jilin: Animal Husbandry Veterinarian, 2019,40(10):103-104.
[4]   雷孝才. 试述砚山县猪肺疫的综合防制措施. 农家参谋, 2019,22:160.
[4]   Lei X C. Described the comprehensive prevention and control measures of swine lung disease in yanshan county. Farm Staff, 2019,22:160.
[5]   Liu H, Zhao Z, Xi X, et al. Occurrence of Pasteurella multocida among pigs with respiratory disease in China between 2011 and 2015. Irish Veterinary Journal, 2017,70(1):2.
doi: 10.1186/s13620-016-0080-7
[6]   Kim Jongho, Kim Jong Wan, Oh Sang-Ik, et al. Characterisation of Pasteurella multocida isolates from pigs with pneumonia in Korea. BMC Veterinary Research, 2019,15(1):119.
doi: 10.1186/s12917-019-1861-5 pmid: 31023320
[7]   João Xavier de, Oliveira Filho, Marcos Antônio Zanella, et al. Pathogenic variability among Pasteurella multocida type A isolates from Brazilian pig farms B. MC Veterinary Research, 2018,14(1):244.
[8]   Niemann L, Feudi C, Eichhorn I, et al. Plasmid-located dfrA14 gene in Pasteurella multocida isolates from three different pig-producing farms in Germany. Veterinary Microbiology, 2019,230:235-240.
doi: 10.1016/j.vetmic.2019.01.016 pmid: 30827394
[9]   Mirzai S, Rifai A O, Tidrick A, et al. A case report on Pasteurella multocida peritoneal dialysis-associated peritonitis: when cats think medical equipment are toys. 2019,2019:5150695.
[10]   Navarro-Navajas Alberto, Ariza-Ordoñez Nicolás, Barrera Camilo. Pasteurella multocida bacteremia associated with contact with a domestic animal: case report. Revista chilena de infectologia: organo oficial de la Sociedad Chilena de Infectologia, 2019,36(5):667-669.
[11]   Hansen M S, Pors S E, Jensen H E, et al. An investigation of the pathology and pathogens associated with porcine respiratory disease complex in Denmark. Journal of Comparative Pathology, 2010,143(2/3):120-131.
doi: 10.1016/j.jcpa.2010.01.012
[12]   Morris E. J. Selective media for some Pasteurella species. Journal of General Microbiology, 1958,19(2):305-311.
doi: 10.1099/00221287-19-2-305 pmid: 13587896
[13]   Knight D P, Paine J E, Speller D C. A selective medium for Pasteurella multocida and its use with animal and human specimens. Journal of Clinical Pathology, 1983,36(5):591-594.
doi: 10.1136/jcp.36.5.591 pmid: 6841651
[14]   Lariviere S, Leblanc L, Mittal K R, et al. Comparison of isolation methods for the recovery of Bordetella bronchiseptica and Pasteurella multocida from the nasal cavities of piglets. Journal of Clinical Microbiology, 1993,31(2):364-367.
doi: 10.1128/JCM.31.2.364-367.1993 pmid: 8432824
[15]   Moore M K, Gates C C J. A new selective enrichment procedure for isolating Pasteurella multocida from Avian and environmental samples. Avian Diseases, 1994,38(2):317-324.
pmid: 7980282
[16]   Marru H D, Anijajo T T, Hassen A A. A study on ovine Pneumonic pasteurellosis:isolation and identification of Pasteurellae and their antibiogram susceptibility pattern in Haramaya District, Eastern Hararghe, Ethiopia. BMC Veterinary Research, 2013,9(1):1-8.
doi: 10.1186/1746-6148-9-224
[17]   K M Townsend, A J Frost, C W Lee, et al. Development of PCR assays for species- and type-specific identification of Pasteurella multocida isolates. Journal of Clinical Microbiology, 1998,36(4):1096-1100.
doi: 10.1128/JCM.36.4.1096-1100.1998 pmid: 9542944
[18]   黄海燕, 王印, 彭娟, 等. 猪源多杀性巴氏杆菌PCR鉴定方法的建立. 畜牧兽医学报, 2012,43(07):1111-1116.
[18]   Huang H Y, Wang Y, Peng J, et al. Development of PCR identification method for Pasteurella multocida. Acta Veterinaria et Zootechnica Sinica. 2012,43(07):1111-1116.
[19]   Register K B, Dejong K D. Analytical verification of a multiplex PCR for identification of Bordetella bronchiseptica and Pasteurella multocida from swine. Veterinary Microbiology, 2006,117(2-4):201-210.
doi: 10.1016/j.vetmic.2006.05.003 pmid: 16782287
[20]   Rajkhowa S. Development of a novel multiplex PCR assay for rapid detection of virulence associated genes of Pasteurella multocida from pigs. Letters in Applied Microbiology, 2015,61(3):293-298.
doi: 10.1111/lam.12453 pmid: 26095172
[21]   Scherrer S, Frei D, Wittenbrink M M. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocidain nasal swabs from swine. Acta Veterinaria Scandinavica, 2015,58(1):83.
doi: 10.1186/s13028-016-0267-7 pmid: 27903273
[22]   Tocqueville V, Kempf I, Paboeuf F, et al. Quantification of Pasteurella multocida in experimentally infected pigs using a real-time PCR assay. Research in Veterinary Science, 2017,112:177.
doi: 10.1016/j.rvsc.2017.04.016 pmid: 28499212
[23]   Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA, Nucleic Acids Research, 2000,28:E63.
[24]   Sun D, Wang J, Wu R, et al. Development of a novel LAMP diagnostic method for visible detection of swine Pasteurella multocida. Veterinary Research Communications, 2010,34(8):649-657.
doi: 10.1007/s11259-010-9433-y
[25]   孙建华, 蒋惠婷, 朱玉欣, 等. 猪多杀性巴氏杆菌环介导等温扩增检测方法的建立. 中国预防兽医学报, 2014(12):49-52.
[25]   Sun J H, Jiang H T, Zhu Y X, et al. Development of a method for detection of swine Pasteurella multocida by LAMP. Chinese Journal of Preventive Veterinary Medicine, 2014(12):49-52.
[26]   Rovira A, Abrahante J, Murtaugh M, et al. Reverse transcription loop-mediated isothermal amplification for the detection of porcine reproductive and respiratory syndrome virus. Journal of Veterinary Diagnostic Investigation, 2009,21:350-354.
doi: 10.1177/104063870902100308 pmid: 19407088
[27]   肖国生. 胸膜肺炎放线杆菌、猪肺炎支原体和多杀性巴氏杆菌基因芯片检测与分型研究. 四川农业大学, 2006.
[27]   Xiao G S. Gene microarray detection and typing of Actinobacillus pleuropneumoniae, Mycoplasmal pneumonia and Pasteurella multocida. Sichuan Agricultural University, 2006.
[28]   卢顺, 向敏, 吴斌, 等. 检测多杀性巴氏杆菌毒素抗体的单抗竞争ELISA方法的建立. 农业生物技术学报, 2008,16(4):555-561.
[28]   Lu S, Xiang M, Wu B, et al. The establishment of a monoclonal competitive ELISA method for the detection of antibody to Pasteurella toxin. Journal of Agricultural Biotechnology, 2008,16(4):555-561.
[29]   Carter G R. The type specific capsular antigen of Pasteurella multocida. Canadian Journal of Medical Sciences, 1952,30(1):48-53.
doi: 10.1139/cjms52-008 pmid: 14905333
[30]   Heddleston K L, Rebers J E G A. Fowl Cholera: gel diffusion precipitin test for serotyping Pasteurella multocida from Avian species. Avian Diseases, 1972,16(4):925-936.
pmid: 4628021
[31]   Harper M, Boyce J D, Adler B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiology Letters, 2006,265(1):1-10.
doi: 10.1111/j.1574-6968.2006.00442.x pmid: 17107417
[32]   Townsend K M, Boyce J D, Chung J Y, et al. Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. Journal of Clinical Microbiology, 2001,39(3):924-929.
doi: 10.1128/JCM.39.3.924-929.2001 pmid: 11230405
[33]   Zhong P, Wan L, Fei W, et al. Genetic and phylogenetic characteristics of Pasteurella multocida isolates from different host species. Frontiers in Microbiology, 2018, 9:1408-.
doi: 10.3389/fmicb.2018.01408 pmid: 29997608
[34]   Tang X B, Zhao Z Q, Hu J Y, et al. Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China. Journal of Clinical Microbiology, 2009,47(4):951-958.
doi: 10.1128/JCM.02029-08 pmid: 19158260
[35]   Harper M, Michael F St, Steen J A, et al. Characterization of the lipopolysaccharide produced by Pasteurella multocida serovars 6, 7 and 16: identification of lipopolysaccharide genotypes L4 and L8. Glycobiology, 2015,25(3).
doi: 10.1093/glycob/cwu109 pmid: 25294388
[36]   Harper M, John M, Turni C, et al. Development of a rapid multiplex PCR assay to genotype Pasteurella multocida strains by use of the lipopolysaccharide outer core biosynthesis locus. Journal of Clinical Microbiology, 2015,53(2):477-485.
doi: 10.1128/JCM.02824-14 pmid: 25428149
[37]   Matsumura Y. Multilocus sequence typing (MLST) analysis. Rinsho Byori the Japanese Journal of Clinical Pathology, 2013,61(12):1116.
pmid: 24605545
[38]   Subaaharan S, Blackall L L, Blackall P J. Development of a multi-lo-cus sequence typing scheme for Avian isolates of Pasteurella multo-cida. Vet Microbiol, 2010,141(3-4):354-361.
doi: 10.1016/j.vetmic.2010.01.017 pmid: 20129742
[39]   Jolley K A, Maiden M C J. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 2010,11(1):595.
doi: 10.1186/1471-2105-11-595
[40]   Peng Z, Wang H, Liang W, et al. A capsule/lipopolysaccharide/MLST geno typeD/L6/ST11 of Pasteurella multocida is likely to be strongly associated with swine respiratory disease in China. Archives of Microbiology, 2017,200(1):107-118.
doi: 10.1007/s00203-017-1421-y pmid: 28825122
[41]   Schwartz D C, Cantor C R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell, 1984,37(1):67-75.
doi: 10.1016/0092-8674(84)90301-5 pmid: 6373014
[42]   Moustafa A M, Bennett M D, Edwards J, et al. Molecular typ-ing of Haemorrhagic septicemia-associated Pasteurella multo-cida isolates from Pakistan and Thailand using multilocus se-quence typing and pulsed-field gel electrophoresis. Res Vet Sci, 2013,95(3):986-990.
doi: 10.1016/j.rvsc.2013.07.003
[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] YUAN Bo-xin,WU Hao,YAN Chun-xiao,LU Juan-e,WEI Zhen-ping,QIAO Jian-jun,RUAN Hai-hua. Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus[J]. China Biotechnology, 2021, 41(7): 81-90.
[3] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[4] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[5] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[6] ZHANG Ling-mei,NG Hao-ju. Research Progress in Streptococcus suis Detection Technology[J]. China Biotechnology, 2020, 40(4): 84-91.
[7] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.
[8] HE Meng,ZHANG Guo-lin,LI Yan,HAN Xue-bo,LIU Hong-peng,LI Xin,QIAN Ling-ling,LIU Kun-mei,GUO Le. Soluble Expression of Recombinant Antigen CagL from Helicobacter pylori Pathogenicity Island and Preparation and Analysis of Anti-CagA Polyclonal Antibody[J]. China Biotechnology, 2020, 40(11): 21-27.
[9] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[10] Jing-xian LIU,Xin HE,Hui-ming HAN. New Progress in the Study of Streptococcus suis Type 2 Virulence Factors[J]. China Biotechnology, 2018, 38(3): 97-104.
[11] NI Xuan, JIANG Xue, LI Ya-qian, CHEN Jie. Construction and Pathogenicity Analysis of ATMT Mutant of Curvularia lunata[J]. China Biotechnology, 2016, 36(1): 23-28.
[12] WANG Hong-su, GUAN Gui-jing, LIU Jin-xiang. Application of Alexa Fluor in Cytology and Molecular Biology[J]. China Biotechnology, 2015, 35(9): 71-77.
[13] WEI Jin-mei, FAN Xiao-qin, XIONG Hai-ting, GAO Xue-juan, LIU Xiao-hui, LIU Lang-xia. hnRNPK Interacts with Nef and Facilitates the Cell Surface Expression of CD4[J]. China Biotechnology, 2015, 35(4): 17-22.
[14] JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan. Advance in Research on HA Biosynthesis and Gene Engineering[J]. China Biotechnology, 2015, 35(1): 104-110.
[15] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.