Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (10): 73-88    DOI: 10.13523/j.cb.2105013
    
Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection
ZHANG Zheng-yan1,2,CHEN Yu2,SONG Li-jie2,SU Zheng-quan1,**(),ZHANG Hai-yan2,**
1 Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial UniversityEngineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University,Guangzhou 510006, China
2 Sensor Research Center, General Hospital of Southern Theatre Command of the PLA,Guangzhou 510010, China
Download: HTML   PDF(3258KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Field-Effect Transistor (FET) biosensors have received a lot of attention due to their high sensitivity, fast analysis speed, no labeling, small size and simple operation. They are widely used in the detection of DNA, protein, cell, ion and other biomarkers. In recent years, nanomaterials and microelectronics technologies improve the sensing performance of sensors in sensor design. Field-effect transistor biosensors are developing at an amazing speed in the direction of high sensitivity, miniaturization, rapidness and multi-function. To study the working principle of field-effect transistor biosensors, to explain the latest research progress and applications of field-effect transistor biosensors in the field of biomedical testing in recent years, and to discuss the countermeasures of field-effect transistor biosensors to overcome various shortcomings provide a reference for the development of the sensor in future biomedical testing, which is of great significance to promote its development and application.



Key wordsField-effect transistor      Biosensors      Biomedical application      Analysis and detection     
Received: 07 May 2021      Published: 08 November 2021
ZTFLH:  Q819  
Corresponding Authors: Zheng-quan SU,Hai-yan ZHANG     E-mail: zhanghaiyan1998@126.com
Cite this article:

ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection. China Biotechnology, 2021, 41(10): 73-88.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2105013     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I10/73

Fig.1 Schematic diagram of basic structure of field effect transistor sensor
Fig.2 Schematic diagram of field effect transistor biosensors
Fig.3 The detection principle of EGFET glucose sensor (a) and its linear range of glucose detection (b)
Fig.4 Wearable 3D-EMG-ISFETs (ISM) functionalized with ion selective membranes (ISMs) for Na+, K+, and Ca2+ sensing (a) Picture of real product (b) Schematic diagram
Fig.5 Principle of graphene nanosensor detecting insulin
Fig.6 Schematic structure of DNA modified thin film field effect device and the principleof DNA-hybridization detection
Fig.7 Schematic representation of the hybridization of PNA-modified ISFET
Fig.8 Structure and principle of function of an enzyme-based thin film field effect device
Fig.9 Schematic representation and detection result of DNA amplification and detection by pH-based sensing semiconductor system (a) Principle of method (b,c) On-chip amplification and detection using pH-PCR and pH-LAMP
年份 研究者 意义 示意图 参考文献
1978 Schenk 将ISFET的活性表面用抗体修饰,首次利用ISFET平台通过蛋白质的固有电荷来测量蛋白质 [65]
1989 Gotoh 首次将抗人血清白蛋白免疫球蛋白G (IgG)固定在聚乙烯丁缩醛(PVB)膜上,再放置于ISFET传感通道上,开启抗体固定的新方式 [66]
2001 Yi Cui 用生物素修饰的SiNW检测链霉亲和素,抗原功能化的SiNW实时显示抗体结合是可逆的和有浓度依赖性的
[67]
2005 So Hye-mi 首次成功展示了使用适体替代基于蛋白质的传感元件的SWNT-FET生物传感器 [68]
Table 1 Research process of immunoFET
Fig.10 Configuration of a SiNW-FET biosensor for measuring electrical activity in cardiomyocytes
Fig.11 Schematic diagram of ABX-GMFET in the dual-channel microfluidics (a) and its detection results for Escherichia coli (b), Salmonella (c), Staphylococcus aureus (d) and Enterococcus faecalis (e) and the real-time response of ABX-GMFET to GNB (f), GPB (g) and the mixture of GNB and GPB (h) in buffer solution
[1]   Bergveld P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, 1970, BME-17(1): 70-71.
doi: 10.1109/TBME.1970.4502688
[2]   Caras S, Janata J. Field effect transistor sensitive to penicillin. Analytical Chemistry, 1980, 52(12): 1935-1937.
doi: 10.1021/ac50062a035
[3]   Arshad M K M, Adzhri R, Fathil M F M, et al. Field-effect transistor-integration with TiO2 nanoparticles for sensing of cardiac troponin I biomarker. Journal of Nanoscience and Nanotechnology, 2018, 18(8): 5283-5291.
doi: 10.1166/jnn.2018.15419 pmid: 29458578
[4]   Toumazou C, Shepherd L M, Reed S C, et al. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nature Methods, 2013, 10(7): 641-646.
doi: 10.1038/nmeth.2520
[5]   Zadorozhnyi I, Hlukhova H, Kutovyi Y, et al. Towards pharmacological treatment screening of cardiomyocyte cells using Si nanowire FETs. Biosensors and Bioelectronics, 2019, 137: 229-235.
doi: S0956-5663(19)30329-X pmid: 31121460
[6]   Wang Y L, Wang T, Da P M, et al. Silicon nanowires for biosensing, energy storage, and conversion. Advanced Materials (Deerfield Beach, Fla), 2013, 25(37): 5177-5195.
doi: 10.1002/adma.201301943
[7]   Wang H, Wang Y, Hou X P, et al. Bioelectronic nose based on single-stranded DNA and single-walled carbon nanotube to identify a major plant volatile organic compound (p-ethylphenol) released by Phytophthora cactorum infected strawberries. Nanomaterials (Basel), 2020, 10(3): 479.
doi: 10.3390/nano10030479
[8]   Zhang A Q, Lieber C M. Nano-bioelectronics. Chemical Reviews, 2016, 116(1): 215-257.
doi: 10.1021/acs.chemrev.5b00608 pmid: 26691648
[9]   Li B R, Chen C C, Kumar U R, et al. Advances in nanowire transistors for biological analysis and cellular investigation. The Analyst, 2014, 139(7): 1589-1608.
doi: 10.1039/c3an01861j
[10]   Liang Y Q, Xiao M M, Wu D, et al. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano, 2020, 14(7): 8866-8874.
doi: 10.1021/acsnano.0c03523 pmid: 32574035
[11]   Mao S, Chang J B, Pu H H, et al. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews, 2017, 46(22): 6872-6904.
doi: 10.1039/C6CS00827E
[12]   Andronescu C, Schuhmann W. Graphene-based field effect transistors as biosensors. Current Opinion in Electrochemistry, 2017, 3(1): 11-17.
doi: 10.1016/j.coelec.2017.03.002
[13]   Ahmad R, Tripathy N, Park J H, et al. A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea. Chemical Communications (Cambridge, England), 2015, 51(60): 11968-11971.
doi: 10.1039/C5CC03656A
[14]   Park H, Han G, Lee S W, et al. Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics. ACS Applied Materials & Interfaces, 2017, 9(50): 43490-43497.
[15]   Liu Q Z, Liu Y H, Wu F Q, et al. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano, 2018, 12(2): 1170-1178.
doi: 10.1021/acsnano.7b06823
[16]   Jiang L, Dong H L, Meng Q, et al. Millimeter-sized molecular monolayer two-dimensional crystals. Advanced Materials (Deerfield Beach, Fla), 2011, 23(18): 2059-2063.
doi: 10.1002/adma.v23.18
[17]   Sibbald A, Whalley P D, Covington A K. A miniature flow-through cell with a four-function chemfet integrated circuit for simultaneous measurements of potassium, hydrogen, calcium and sodium ions. Analytica Chimica Acta, 1984, 159: 47-62.
doi: 10.1016/S0003-2670(00)84280-4
[18]   Moss S D, Johnson C C, Janata J. Hydrogen, calcium, and potassium ion-sensitive FET transducers: a preliminary report. IEEE Transactions on Bio Medical Engineering, 1978, 25(1): 49-54.
[19]   Shul’Ga A A, Sandrovsky A C, Strikha V I, et al. Overall characterization of ISFET-based glucose biosensor. Sensors and Actuators B: Chemical, 1992, 10(1): 41-46.
doi: 10.1016/0925-4005(92)80009-M
[20]   Wang B F, Luo Y Y, Gao L, et al. High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosensors and Bioelectronics, 2021, 171: 112736.
doi: 10.1016/j.bios.2020.112736
[21]   Middya S, Bhattacharjee M, Bandyopadhyay D. Reusable nano-BG-FET for point-of-care estimation of ammonia and urea in human urine. Nanotechnology, 2019, 30(14): 145502.
doi: 10.1088/1361-6528/aafe44
[22]   Guan W H, Reed M A. Extended gate field-effect transistor biosensors for point-of-care testing of uric acid. Biosensors and Biodetection, 2017, 1572: 189-203.
[23]   Klinghammer S, Voitsekhivska T, Licciardello N, et al. Nanosensor-based real-time monitoring of stress biomarkers in human saliva using a portable measurement system. ACS Sensors, 2020, 5(12): 4081-4091.
doi: 10.1021/acssensors.0c02267 pmid: 33270427
[24]   Minamiki T, Tokito S, Minami T. Fabrication of a flexible biosensor based on an organic field-effect transistor for lactate detection. Analytical Sciences, 2019, 35(1): 103-106.
doi: 10.2116/analsci.18SDN02 pmid: 30146546
[25]   Schuck A, Kim H E, Moreira J K, et al. A graphene-based enzymatic biosensor using a common-gate field-effect transistor for L-lactic acid detection in blood plasma samples. Sensors (Basel), 2021, 21(5): 1852.
doi: 10.3390/s21051852
[26]   Zheng C, Jin X, Li Y T, et al. Sensitive molybdenum disulfide based field effect transistor sensor for real-time monitoring of hydrogen peroxide. Scientific Reports, 2019, 9(1): 759.
doi: 10.1038/s41598-018-36752-y pmid: 30679538
[27]   Ozansoy Kasap B, Marchenko S V, Soldatkin O O, et al. Biosensors based on nano-gold/zeolite-modified ion selective field-effect transistors for creatinine detection. Nanoscale Research Letters, 2017, 12(1): 162.
doi: 10.1186/s11671-017-1943-x pmid: 28264530
[28]   Marchenko S V, Soldatkin O O, Kasap B O, et al. Creatinine deiminase adsorption onto silicalite-modified pH-FET for creation of new creatinine-sensitive biosensor. Nanoscale Research Letters, 2016, 11(1): 173.
doi: 10.1186/s11671-016-1386-9 pmid: 27033849
[29]   Koike K, Sasaki T, Hiraki K, et al. Characteristics of an extended gate field-effect transistor for glucose sensing using an enzyme-containing silk fibroin membrane as the bio-chemical component. Biosensors (Basel), 2020, 10(6): 57.
[30]   Zhang J R, Rupakula M, Bellando F, et al. Sweat biomarker sensor incorporating picowatt, three-dimensional extended metal gate ion sensitive field effect transistors. ACS Sensors, 2019, 4(8): 2039-2047.
doi: 10.1021/acssensors.9b00597
[31]   Nguyen T T K, Tran H V, Vu T T, et al. Peptide-modified electrolyte-gated organic field effect transistor. Application to Cu2+ detection. Biosensors and Bioelectronics, 2019, 127: 118-125.
doi: S0956-5663(18)30959-X pmid: 30594891
[32]   Tu J W, Gan Y, Liang T, et al. Graphene FET array biosensor based on ssDNA aptamer for ultrasensitive Hg2+ detection in environmental pollutants. Frontiers in Chemistry, 2018, 6: 333.
doi: 10.3389/fchem.2018.00333
[33]   Wang C Y, Cui X Y, Li Y, et al. A label-free and portable graphene FET aptasensor for children blood lead detection. Scientific Reports, 2016, 6: 21711.
doi: 10.1038/srep21711
[34]   Wang H, Liu Y, Liu G. Label-free biosensor using a silver specific RNA-cleaving DNAzyme functionalized single-walled carbon nanotube for silver ion determination. Nanomaterials (Basel), 2018, 8(4): 258.
doi: 10.3390/nano8040258
[35]   Shahim S, Sukesan R, Sarangadharan I, et al. Multiplexed ultra-sensitive detection of Cr(III) and Cr(VI) ion by FET sensor array in a liquid medium. Sensors (Basel), 2019, 19(9): 1969.
doi: 10.3390/s19091969
[36]   Meir R, Zverzhinetsky M, Harpak N, et al. Direct detection of uranyl in urine by dissociation from aptamer-modified nanosensor arrays. Analytical Chemistry, 2020, 92(18): 12528-12537.
doi: 10.1021/acs.analchem.0c02387
[37]   Sattarahmady N, Heli H, Moosavi-Movahedi A A. An electrochemical acetylcholine biosensor based on nanoshells of hollow nickel microspheres-carbon microparticles-Nafion nanocomposite. Biosensors and Bioelectronics, 2010, 25(10): 2329-2335.
doi: 10.1016/j.bios.2010.03.031 pmid: 20413292
[38]   Kong D S, Jin R, Zhao X, et al. Protein-inorganic hybrid nanoflower-rooted agarose hydrogel platform for point-of-care detection of acetylcholine. ACS Applied Materials & Interfaces, 2019, 11(12): 11857-11864.
[39]   Chae M S, Yoo Y K, Kim J, et al. Graphene-based enzyme-modified field-effect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment. Sensors and Actuators B: Chemical, 2018, 272: 448-458.
doi: 10.1016/j.snb.2018.06.010
[40]   Fenoy G E, Marmisollé W A, Azzaroni O, et al. Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosensors and Bioelectronics, 2020, 148: 111796.
doi: 10.1016/j.bios.2019.111796
[41]   Rakovska A, Javitt D, Petkova-Kirova P, et al. Neurochemical evidence that cysteamine modulates amphetamine-induced dopaminergic neuronal activity in striatum by decreasing dopamine release: an in vivo microdialysis study in freely moving rats. Brain Research Bulletin, 2019, 153: 39-46.
doi: 10.1016/j.brainresbull.2019.08.005
[42]   Liu N, Xiang X P, Fu L, et al. Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains. Biosensors and Bioelectronics, 2021, 188: 113340.
doi: 10.1016/j.bios.2021.113340 pmid: 34030092
[43]   Ben Halima H, Bellagambi F G, Alcacer A, et al. A silicon nitride ISFET based immunosensor for tumor necrosis factor-alpha detection in saliva. A promising tool for heart failure monitoring. Analytica Chimica Acta, 2021, 1161: 338468.
doi: 10.1016/j.aca.2021.338468 pmid: 33896556
[44]   Dudina A, Frey U, Hierlemann A. Carbon-nanotube-based monolithic CMOS platform for electrochemical detection of neurotransmitter glutamate. Sensors (Basel), 2019, 19(14): 3080.
doi: 10.3390/s19143080
[45]   Braeken D, Rand D R, Andrei A, et al. Glutamate sensing with enzyme-modified floating-gate field effect transistors. Biosensors and Bioelectronics, 2009, 24(8): 2384-2389.
doi: 10.1016/j.bios.2008.12.012 pmid: 19155170
[46]   Lee J H, Chae E J, Park S J, et al. Label-free detection of γ-aminobutyric acid based on silicon nanowire biosensor. Nano Convergence, 2019, 6(1): 13.
doi: 10.1186/s40580-019-0184-3
[47]   Xie H, Li Y T, Lei Y M, et al. Real-time monitoring of nitric oxide at single-cell level with porphyrin-functionalized graphene field-effect transistor biosensor. Analytical Chemistry, 2016, 88(22): 11115-11122.
doi: 10.1021/acs.analchem.6b03208
[48]   Hao Z, Zhu Y B, Wang X J, et al. Real-time monitoring of insulin using a graphene field-effect transistor aptameric nanosensor. ACS Applied Materials & Interfaces, 2017, 9(33): 27504-27511.
[49]   Souteyrand E, Cloarec J P, Martin J R, et al. Direct detection of the hybridization of synthetic Homo-oligomer DNA sequences by field effect. The Journal of Physical Chemistry B, 1997, 101(15): 2980-2985.
doi: 10.1021/jp963056h
[50]   Uslu F, Ingebrandt S, Mayer D, et al. Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosensors and Bioelectronics, 2004, 19(12): 1723-1731.
pmid: 15142607
[51]   Pouthas F, Gentil C, Côte D, et al. Spatially resolved electronic detection of biopolymers. Physical Review E, 2004, 70(3): 031906.
doi: 10.1103/PhysRevE.70.031906
[52]   Gonçalves D, Prazeres D M F, Chu V, et al. Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. Biosensors and Bioelectronics, 2008, 24(4): 545-551.
doi: 10.1016/j.bios.2008.05.006 pmid: 18599283
[53]   Veigas B, Fortunato E, Baptista P V. Field effect sensors for nucleic acid detection: recent advances and future perspectives. Sensors (Basel, Switzerland), 2015, 15(5): 10380-10398.
doi: 10.3390/s150510380
[54]   Uno T, Tabata H, Kawai T. Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization. Analytical Chemistry, 2007, 79(1): 52-59.
doi: 10.1021/ac060273y
[55]   Kaisti M, Kerko A, Aarikka E, et al. Real-time wash-free detection of unlabeled PNA-DNA hybridization using discrete FET sensor. Scientific Reports, 2017, 7: 15734.
doi: 10.1038/s41598-017-16028-7 pmid: 29147003
[56]   Hahm J I, Lieber C M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters, 2004, 4(1): 51-54.
doi: 10.1021/nl034853b
[57]   Chen S, Sun Y, Xia Y P, et al. Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosensors and Bioelectronics, 2020, 156: 112128.
doi: 10.1016/j.bios.2020.112128
[58]   Hwang M T, Heiranian M, Kim Y, et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature Communications, 2020, 11: 1543.
doi: 10.1038/s41467-020-15330-9
[59]   Cheung K M, Abendroth J M, Nakatsuka N, et al. Detecting DNA and RNA and differentiating single-nucleotide variations via field-effect transistors. Nano Letters, 2020, 20(8): 5982-5990.
doi: 10.1021/acs.nanolett.0c01971 pmid: 32706969
[60]   Selvaraj M, Greco P, Sensi M, et al. Label free detection of miRNA-21 with electrolyte gated organic field effect transistors (EGOFETs). Biosensors and Bioelectronics, 2021, 182: 113144.
doi: 10.1016/j.bios.2021.113144 pmid: 33799026
[61]   Sakurai T, Husimi Y. Real-time monitoring of DNA polymerase reactions by a micro ISFET pH sensor. Analytical Chemistry, 1992, 64(17): 1996-1997.
pmid: 1416046
[62]   Boder E T, Midelfort K S, Wittrup K D. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. PNAS, 2000, 97(20): 10701-10705.
pmid: 10984501
[63]   Friguet B, Chaffotte A F, Djavadi-Ohaniance L, et al. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. Journal of Immunological Methods, 1985, 77(2): 305-319.
pmid: 3981007
[64]   Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 1971, 8(9): 871-874.
pmid: 5135623
[65]   Koryta J. Theory, design, and biomedical applications of solid state chemical sensors, P.W. Cheung, D.G. Fleming, M.R. Neuman, W.H. Ko (Eds.). CRC Press, West Palm Beach (1978). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 102(2): 274.
[66]   Gotoh M, Suzuki M, Kubo I, et al. Immuno-FET sensor. Journal of Molecular Catalysis, 1989, 53(3): 285-292.
doi: 10.1016/0304-5102(89)80063-X
[67]   Cui Y, Wei Q Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289-1292.
pmid: 11509722
[68]   So H M, Won K, Kim Y H, et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. Journal of the American Chemical Society, 2005, 127(34): 11906-11907.
doi: 10.1021/ja053094r
[69]   Sun C F, Wang Y X, Sun M Y, et al. Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors. Biosensors and Bioelectronics, 2020, 164: 112251.
doi: 10.1016/j.bios.2020.112251
[70]   Kim D H, Oh H G, Park W H, et al. Detection of alpha-fetoprotein in hepatocellular carcinoma patient plasma with graphene field-effect transistor. Sensors (Basel), 2018, 18(11): 4032.
doi: 10.3390/s18114032
[71]   Sun C F, Li R, Song Y R, et al. Ultrasensitive and reliable organic field-effect transistor-based biosensors in early liver cancer diagnosis. Analytical Chemistry, 2021, 93(15): 6188-6194.
doi: 10.1021/acs.analchem.1c00372
[72]   Mansouri Majd S, Salimi A. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Analytica Chimica Acta, 2018, 1000: 273-282.
doi: S0003-2670(17)31253-9 pmid: 29289320
[73]   Seo G, Lee G, Kim M J, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4): 5135-5142.
doi: 10.1021/acsnano.0c02823
[74]   Fathi-Hafshejani P, Azam N, Wang L, et al. Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2). ACS Nano, 2021, 15(7): 11461-11469.
doi: 10.1021/acsnano.1c01188
[75]   Shariati M, Vaezjalali M, Sadeghi M. Ultrasensitive and easily reproducible biosensor based on novel doped MoS2 nanowires field-effect transistor in label-free approach for detection of hepatitis B virus in blood serum. Analytica Chimica Acta, 2021, 1156: 338360.
doi: 10.1016/j.aca.2021.338360 pmid: 33781462
[76]   Song P F, Fu H, Wang Y J, et al. A microfluidic field-effect transistor biosensor with rolled-up indium nitride microtubes. Biosensors and Bioelectronics, 2021, 190: 113264.
doi: 10.1016/j.bios.2021.113264
[77]   Wang Z R, Hao Z, Yu S F, et al. A wearable and deformable graphene-based affinity nanosensor for monitoring of cytokines in biofluids. Nanomaterials (Basel), 2020, 10(8): 1503.
doi: 10.3390/nano10081503
[78]   Hao Z, Luo Y, Huang C, et al. An intelligent graphene-based biosensing device for cytokine storm syndrome biomarkers detection in human biofluids. Small, 2021, 17(29): e2101508.
[79]   Caluori G, Pribyl J, Pesl M, et al. Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosensors and Bioelectronics, 2019, 124-125: 129-135.
doi: S0956-5663(18)30831-5 pmid: 30366257
[80]   Prohaska O J, Olcaytug F, Pfundner P, et al. Thin-film multiple electrode probes: possibilities and limitations. IEEE Transactions on Biomedical Engineering, 1986, BME-33(2): 223-229.
doi: 10.1109/TBME.1986.325894
[81]   Dipalo M, Rastogi S K, Matino L, et al. Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes. Science Advances, 2021, 7(15): eabd5175.
doi: 10.1126/sciadv.abd5175
[82]   Kim K H, Park S J, Park C S, et al. High-performance portable graphene field-effect transistor device for detecting Gram-positive and -negative bacteria. Biosensors and Bioelectronics, 2020, 167: 112514.
doi: 10.1016/j.bios.2020.112514
[83]   Thakur B, Zhou G H, Chang J B, et al. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device. Biosensors and Bioelectronics, 2018, 110: 16-22.
doi: 10.1016/j.bios.2018.03.014
[84]   Pandey A, Gurbuz Y, Ozguz V, et al. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157: H7. Biosensors and Bioelectronics, 2017, 91: 225-231.
doi: 10.1016/j.bios.2016.12.041
[85]   Singh P, Abedini Sohi P, Kahrizi M. Finite element modelling of bandgap engineered graphene FET with the application in sensing methanethiol biomarker. Sensors (Basel), 2021, 21(2): 580.
doi: 10.3390/s21020580
[86]   Lin Z H, Wu G F, Zhao L, et al. Detection of bacterial metabolic volatile indole using a graphene-based field-effect transistor biosensor. Nanomaterials (Basel), 2021, 11(5): 1155.
doi: 10.3390/nano11051155
[87]   Saito A, Sakata T. Sperm-cultured gate ion-sensitive field-effect transistor for non-optical and live monitoring of sperm capacitation. Sensors (Basel), 2019, 19(8): 1784.
doi: 10.3390/s19081784
[1] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[2] LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor[J]. China Biotechnology, 2019, 39(10): 112-116.
[3] Fang-xu WANG,Yu-ling CHEN,Du-yan GENG,Chuan-fang CHEN. Research Progress on Biomedical Applications of Magnetotactic Bacteria and the Biosynthetic Magnetosomes[J]. China Biotechnology, 2018, 38(9): 74-80.