Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (8): 33-40    DOI: 10.13523/j.cb.2003055
    
Identification and Expression of Elastin-like Polypeptides
ZHANG Xiao-hang1,LI Yuan-yuan2,JIA Min-xuan2,3,GU Qi2,4,**()
1 Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
2 State Key Laboratory of Membrane Biology, Institute of Zoology, CAS, Beijing 100101, China
3 College of Life Science, Northeast Agricultural University, Harbin 150030, China
4 Stem Cell and Regenerative Medicine Institute, CAS, Beijing 100101, China
Download: HTML   PDF(2172KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Organ reconstruction may have severals of requirements for the elasticity, stiffness, and biological activity of the materials due to different applications, but currently many materials are challenging to meet these requirements at the same time. For example, polyethylene glycol diacrylate, a kind of widely used elastic material, do not have high biological activity, while bio-materials such as collagen have poor elasticity. As an elastic functional protein which widely existing in animals, elastin is valued in tissue engineering reconstruction of elastic organs for its special properties that can withstand large deformation without destroying its structure. The amino acid sequence of the elastin-like polypeptide (ELP) designed in this article meets the requirements in the project, excellent biological activity and elasticity, according to the basic repeat unit Val-Pro-Gly-Xaa-Gly and preference and degeneracy of the E coli. condon. After the plasmid was constructed, the ELP was expressed and collected in E coli. BL21 (DE3), and then identified the protein by SDS-PAGE. The modulus data of the protein was tested by rheology, the microstructure of the material system was tested by SEM, the biological activity of the material was tested by cell culture. These methods identified the elastic properties, physical structure and biological activity of materials. They contributed the basis for enhancing the elasticity by crosslinking and its application in tissue engineering and organs reconstruction.



Key wordsElastin-like polypeptides      Prokaryotic expression      Bio-materials     
Received: 23 March 2020      Published: 10 September 2020
ZTFLH:  Q819  
Corresponding Authors: Qi GU     E-mail: qgu@ioz.ac.cn
Cite this article:

ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides. China Biotechnology, 2020, 40(8): 33-40.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2003055     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I8/33

Fig.1 Schematic diagram and identification of the recombination vector pET-28b-RGD-ELP (a) The plasmid map of pET-28b-RGD-ELP (b) Design strategies for amino acid sequences of RGD-ELP(the L、R、K in different colors have a free amino) (c) Recombinant plasmid digestion, 1: pET-28b-RGD-ELP plasmid; 2: pET-28b-RGD-ELP plasmid digested by MluⅠ and HindⅢ; M: kb ladder marker (d) Alignment between the design amino acid sequence and the sequencing result (red)
Fig.2 Analysis of prokaryotic expression RGD-ELP by SDS-PAGE (a) 1:None-induction supernatant; 2:None-induction pricipitation; 3: Supernatant induced by IPTG; 4: Pricipitation induced by IPTG (b) 1、2、3: Discarded precipitate in the ITC cycles;4、5: Solution of the collected protein
Fig.3 The status of 10% RGD-ELP before and after cross-linking and the rheological test of 10% ELP or gelatin mixed with 5% PEG-NHS (a) 10% RGD-ELP in H2O (b) 1h after 10% RGD-ELP equal volume mixed with 5% PEG-NHS in H2O (c) The diagram of cross-linking reaction between RGD-ELP and 4-arm-PEG-NHS (d) Rheological test of 10% RGD-ELP or gelatin equal volume mixed with 5% 4-arm-PEG-NHS
Fig.4 Structure of RGD-ELP and PEG-NHS after crosslinked, SEM (a) The process of sample preparation (b) 5% ELP+10% PEG-NHS,×500, bar: 50μm (c) 10% ELP+10% PEG-NHS,×500, bar: 50μm (d) The magnified SEM image of white rectangle in Figure4(c),×2 000, bar: 10μm (e) The magnified SEM image of white rectangle in Figure4(e),×2 000, bar: 10μm (f) The pore cross section(μm2) of different samples
Fig.5 Results of 3D culture of hMSC cells in the mixtures of RGD-ELP or collagen with PEG-NHS Live/dead staining of hMSCs, under confocal microscope (a) 1% COL and 1% PEG-NHS in the mixture, bar: 100μm (b) 1% RGD-ELP and 1% PEG-NHS in the mixture, bar: 100μm (c) Cell viability of the hMSCs, which was cultured 24h after mixed with the materials
[1]   Kim M S, Lee D W, Park K, et al. Temperature-triggered tumor-specific delivery of anticancer agents by cRGD-conjugated thermosensitive liposomes. Colloids Surf B Biointerfaces, 2014,116:17-25.
doi: 10.1016/j.colsurfb.2013.12.045 pmid: 24441178
[2]   Liu H, Liu H, Deng X, et al. CXCR4 antagonist delivery on decellularized skin scaffold facilitates impaired wound healing in diabetic mice by increasing expression of SDF-1 and enhancing migration of CXCR4-positive cells. Wound Repair Regen, 2017,25(4):652-664.
doi: 10.1111/wrr.12552 pmid: 28783870
[3]   Tort S, Acarturk F, Besikci A. Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. Int J Pharm, 2017,529(1-2):642-653.
doi: 10.1016/j.ijpharm.2017.07.027 pmid: 28705624
[4]   Zhong S P, Zhang Y Z, Lim C T. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010,2(5):510-525.
doi: 10.1002/wnan.100 pmid: 20607703
[5]   Lee A, Hudson A R, Shiwarski D J, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science, 2019,365(6452):482-487.
doi: 10.1126/science.aav9051 pmid: 31371612
[6]   Ji S, Almeida E, Guvendiren M. 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomater, 2019,95:214-224.
[7]   Lu Y, Aimetti A A, Langer R, et al. Bioresponsive materials. Nat Rev Mater, 2016,2(1):16075.
[8]   Datta L P, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials, 2020,230:119633.
doi: 10.1016/j.biomaterials.2019.119633 pmid: 31831221
[9]   Raub C B, Suresh V, Krasieva T, et al. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys J, 2007,92(6):2212-2222.
doi: 10.1529/biophysj.106.097998 pmid: 17172303
[10]   Abdulghani S, Morouco P G. Biofabrication for osteochondral tissue regeneration: bioink printability requirements. J Mater Sci Mater Med, 2019,30(2):20.
pmid: 30689057
[11]   Zhang Z, Ortiz O, Goyal R, et al. Principles of tissue engineering. 4th ed. Boston,USA: Academic Press, 2014: 441-473.
[12]   Vindin H, Mithieux S M, Weiss A S. Elastin architecture. Matrix Biol, 2019,84:4-16.
pmid: 31301399
[13]   Urry D W, Pattanaik A, Xu J, et al. Elastic protein-based polymers in soft tissue augmentation and generation. J Biomater Sci Polym Ed, 1998,9(10):1015-1048.
[14]   Morelli M A, DeBiasi M, DeStradis A, et al. An aggregating elastin-like pentapeptide. J Biomol Struct Dyn, 1993,11(1):181-190.
doi: 10.1080/07391102.1993.10508716 pmid: 8216943
[15]   Meyer D E, Chilkoti A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol, 1999,17(11):1112-1115.
doi: 10.1038/15100 pmid: 10545920
[16]   Zeng Q, Desai M S, Jin H E, et al. Self-healing elastin-bioglass hydrogels. Biomacromolecules, 2016,17(8):2619-2625.
[17]   Lin C Y, Liu J C. Incorporation of short, charged peptide tags affects the temperature responsiveness of positively-charged elastin-like polypeptides. J Mater Chem B, 2019,7(34):5245-5256.
doi: 10.1039/c9tb00821g pmid: 31384872
[18]   Aladini F, Araman C, Becker C F. Chemical synthesis and characterization of elastin-like polypeptides (ELPs) with variable guest residues. J Pept Sci, 2016,22(5):334-342.
pmid: 27005861
[19]   Wang E, Lee S H, Lee S W. Elastin-like polypeptide based hydroxyapatite bionanocomposites. Biomacromolecules, 2011,12(3):672-680.
doi: 10.1021/bm101322m pmid: 21218767
[20]   Raphel J, Karlsson J, Galli S, et al. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials, 2016,83:269-282.
doi: 10.1016/j.biomaterials.2015.12.030 pmid: 26790146
[21]   Shmidov Y, Zhou M, Yosefi G, et al. Hydrogels composed of hyaluronic acid and dendritic ELPs: hierarchical structure and physical properties. Soft Matter, 2019,15(5):917-925.
[22]   Desai M S, Wang E, Joyner K, et al. Elastin-based rubber-like hydrogels. Biomacromolecules, 2016,17(7):2409-2416.
doi: 10.1021/acs.biomac.6b00515 pmid: 27257908
[23]   Huettner N, Dargaville T R, Forget A. Discovering cell-adhesion peptides in tissue engineering: beyond RGD. Trends Biotechnol, 2018,36(4):372-383.
doi: 10.1016/j.tibtech.2018.01.008 pmid: 29422411
[24]   Wang H, Cai L, Paul A, et al. Hybrid elastin-like polypeptide-polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density. Biomacromolecules, 2014,15(9):3421-3428.
doi: 10.1021/bm500969d pmid: 25111283
[25]   Sun F, Bu Y, Chen Y, et al. An injectable and instant self-healing medical adhesive for wound sealing. ACS Appl Mater Interfaces, 2020,12(8):9132-9140.
doi: 10.1021/acsami.0c01022 pmid: 32058692
[26]   Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020,226:119536.
doi: 10.1016/j.biomaterials.2019.119536 pmid: 31648135
[27]   Croce S, Peloso A, Zoro T, et al. A hepatic scaffold from decellularized liver tissue: food for thought. Biomolecules, 2019,9(12):813.
[28]   Valot L, Martinez J, Mehdi A, et al. Chemical insights into bioinks for 3D printing. Chem Soc Rev, 2019,48(15):4049-4086.
doi: 10.1039/c7cs00718c pmid: 31271159
[29]   Tsuchiya T, Doi R, Obata T, et al. Lung microvascular niche, repair, and engineering. Front Bioeng Biotechnol, 2020, 8: 105.
doi: 10.3389/fbioe.2020.00105 pmid: 32154234
[30]   Wei L, Wu S, Kuss M, et al. 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering. Bioact Mater, 2019,4:256-260.
doi: 10.1016/j.bioactmat.2019.09.001 pmid: 31667442
[31]   Sykes M, Sachs D H. Transplanting organs from pigs to humans. Sci. Immunol, 2019,4(41):12.
[32]   Chimene D, Kaunas R, Gaharwar A K. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Adv Mater, 2020,32(1):e1902026.
doi: 10.1002/adma.201902026 pmid: 31599073
[33]   Daamen W F, Veerkamp J H, van Hest J C, et al. Elastin as a biomaterial for tissue engineering. Biomaterials, 2007,28(30):4378-4398.
doi: 10.1016/j.biomaterials.2007.06.025 pmid: 17631957
[34]   Dhandhukia J P, Shi P, Peddi S, et al. Bifunctional elastin-like polypeptide nanoparticles bind rapamycin and integrins and suppress tumor growth in vivo. Bioconjug Chem, 2017,28(11):2715-2728.
doi: 10.1021/acs.bioconjchem.7b00469 pmid: 28937754
[35]   Samourides A, Browning L, Hearnden V, et al. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Mater Sci Eng C Mater Biol Appl, 2020,108:110384.
pmid: 31924046
[36]   Veneti E, Tu R S, Auguste D T. RGD-targeted liposome binding and uptake on breast cancer cells is dependent on elastin linker secondary structure. Bioconjug Chem, 2016,27(8):1813-1821.
doi: 10.1021/acs.bioconjchem.6b00205 pmid: 27463763
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[4] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[5] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[6] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[7] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[8] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[9] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[10] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.
[11] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[12] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.
[13] TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162[J]. China Biotechnology, 2016, 36(4): 78-87.
[14] ZHOU Liang, YE Hao, ZHOU Li, GUAN Wen, LI Jing-jing, GAO Jin, HAN Wei, YU Yan. Prokaryotic Expression and Purification of Bioactive Human CXCL4[J]. China Biotechnology, 2016, 36(1): 7-13.
[15] HUANG Jian, HUANG Mei-rong, ZHU Jie-hua, LUO Shi-lu, MIN Xun. Expression,Purification,Crystallization of SP0306 Protein from Streptococcus pneumoniae[J]. China Biotechnology, 2015, 35(6): 21-25.