Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (7): 41-50    DOI: 10.13523/j.cb.2001070
    
Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response
CHENG Xu1,YANG Yu-qing1,WU Sai-nan1,HOU Qin-long1,2,LI Yong-mei1,2,**(),HAN Hui-ming1,2,**()
1 Medical College of Beihua University, Jilin 132013, China
2 Center for Infection and Immunity Medical College of Beihua University, Jilin 132013, China
Download: HTML   PDF(1660KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the effects of DNA vaccines on the fusion genes of SarA-Azami Green, IcaA-Azami Green, and IcaA-SarA-Azami Green (subsequently Azami Green was represented by AG) and their immune responses in mice.Method:Using the genome of S.aureus as a template, a series of reactions including SarA-AG, IcaA-AG, and IcaA-SarA-AG fusion DNA vaccines were constructed through a series of reactions such as PCR amplification, digestion, and ligation. After transfection into HeLa cells, the transient expression of DNA vaccine was observed under a fluorescent microscope. The cells after two weeks of successful transfection were subjected to genome extraction, and the integration of plasmids on chromosomes was detected by PCR. Recombinant plasmids were extracted using endotoxin-free plasmid extraction kits. BALB / c mice were immunized with AG, SarA-AG, IcaA-AG, and IcaA-SarA-AG. ELISA kits were used to detect mouse IgG antibodies, IL-2, IL-4, IL-13, IFN-γ and TNF-α secretion.Results: SarA-AG, IcaA-AG and IcaA-SarA-AG fusion gene DNA vaccines were successfully constructed. The transfection of the fusion gene DNA vaccine was observed under a fluorescence microscope, and the results showed green fluorescence. Genomic PCR results of the extracted cells showed that the target gene band did not appear. After immunizing mice, SarA-AG, IcaA-AG and IcaA-SarA-AG were able to induce mice to produce higher levels of IgG antibodies. Compared with the blank group and the empty vector AG group, the SarA-AG and IcaA-AG groups were able to secrete higher levels of IL-2 (P<0.001), IFN-γ (P<0.001), and TNF-α (P< 0.001), IL-4 (P<0. 01) and IL-13 (P<0. 01), while IcaA-SarA-AG group TNF-α (P<0.05), IL-4 (P<0. 05)) And IL-13 (P<0.05) were less secreted, but the difference was statistically significant. The secretion of cytokines increased significantly with the increase in the number of immunizations. There was no significant difference in cytokines between the blank group and the empty vector AG group.Conclusion: The DNA vaccines of SarA-AG, IcaA-AG and IcaA-SarA-AG fusion genes were successfully constructed and successfully expressed in eukaryotic cells. PCR verification results confirmed the safety of the DNA vaccine. DNA vaccine can induce humoral immune response and Th1 cell-based cellular immune response after immunizing mice, which has a good application prospect.



Key wordsDNA vaccine      Eukaryotic expression      Immune effect     
Received: 21 January 2020      Published: 13 August 2020
ZTFLH:  Q812  
Corresponding Authors: Yong-mei LI,Hui-ming HAN     E-mail: huiminghan@hotmail.com
Cite this article:

CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response. China Biotechnology, 2020, 40(7): 41-50.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001070     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I7/41

引物 序列 (5'-3')
SarA-BamHI-F(P1) CGCGGATCCATGGCAATTACAAAAATCAATG
SarA-XhoI-R(P2) CCGCTCGAGTCATTTATTTACTCGACTCAAT
IcaA-BamHI-F(P3) CGCGGATCCATGCAATTTTTTAACTTTTTGC
IcaA-XhoI-R(P4) CCGCTCGAGTTAGCGTTGGGTATTCC
SarA-Fusion-F(P5) CCCAACGCTAAATGGCAATTAC
IcaA-Fusion-R(P6) GTAATTGCCATTTAGCGTTGGG
Table 1 Primer sequences
成分 用量
基因组模板 2.0μl
SarA-BamHI-F 2.0μl
SarA-XhoI-R 2.0μl
dNTP(2.5mmol/L each) 5.0μl
10×pfu buffer 5.0μl
Pfu 酶 2.0μl
32.0 μl
Table 2 SarA gene amplification system
Fig.1 SarA,IcaA,IcaA-SarA gene PCR results M: DL2000;1: SarA gene;2: IcaA gene;3: IcaA-SarA gene
Fig.2 PCR results of T vector recombinant plasmid (a)M: DL2000; 1: Negative control; 2: Positive control; 3-4: SarA-T positive clones (b)M: DL2000; 1: Negative control; 2: Positive control; 3-4: All are IcaA-T positive clones (c) M: DL2000;1: Negative control; 2: Positive control; 3-4: All IcaA-SarA-T positive clones
Fig.3 Identification results of T vectoer recombinant plasmid by double enzyme digestion (a) M: DL2000; 1, 3: SarA-T undigested plasmid; 2, 4: SarA-T double-digested plasmid positive results (b) M: DL2000; 1, 3: IcaA-T undigested plasmid; 2, 4: IcaA-T double-digested plasmid positive results (c) M: DL2000; 1, 3: IcaA-SarA-T undigested plasmid; 2, 4: IcaA-SarA-T double-digested plasmid result (2 lane negative result, 4 lane positive result)
Fig.4 T vector recombinant plasmid sequencing results (a) SarA-T sequencing map (b) IcaA-T sequencing map (c) IcaA-SarA-T sequencing map
Fig.5 Identification results of eukaryotic recombinant plasmid by double enzyme digestion (a) M: DL2000; 1, 3: SarA-AG undigested plasmid; 2, 4: SarA-AG double-digested plasmid positive results (b) M: DL2000; 1, 3: IcaA-AG undigested plasmid; 2, 4: IcaA-AG double-digested plasmid positive results (c) M: DL2000; 1, 3: IcaA-SarA-AG undigested plasmid; 2, 4: IcaA-SarA-AG double-digested plasmid
Fig.6 Cells transfection results of DNA vaccine (a)-(c) Field images of SarA-AG, IcaA-AG, and IcaA-SarA-AG fluorescence microscopes (20×);(d)-(f) Fluorescence pictures under SarA-AG, IcaA-AG, IcaA-SarA-AG fluorescence microscope (20×)
Fig.7 Results of DNA vaccine safety by PCR testing M: DL2000; 1, 3, 5: PCR results S. aureus genome as template;2, 4, 6: PCR results using genome-transformed HeLa cells successfully as template. The order is: SarA gene, IcaA gene, IcaA-SarA gene
Fig.8 Detection of mouse serum IgG antibodies *** P<0.001 vs Blank group;;### P<0.001 vs AG group
Fig.9 Detection of mouse serum cytokines (a)IFN-γ (b)IL-2 (c)TNF-α (d)IL-4 (e)IL-13 secretion levels * P<0.05; ** P<0.01; *** P<0.001 vs blank group. # P<0.05; ## P<0.01; ### P<0.001 vs AG group
[1]   Derek T, Singh M, Ulmer J B. Microparticle-based technologies for vaccines. Methods, 2006,40(1):10-19.
pmid: 16997709
[2]   杨海, 王芳宇. DNA疫苗的研究进展. 中国畜牧兽医, 2013,40(1):72-76.
[2]   Yang H, Wang F Y. Research progress of DNA vaccines. China Animal Husbandry and Veterinary Medicine, 2013,40(1):72-76.
[3]   Chen Y, Liu T J, Wang K, et al. Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One, 2016,11(4):e0153468.
pmid: 27128436
[4]   施德仕, 邵海枫. 细菌生物膜感染的研究进展. 医学研究生学报, 2011,24(12):1319-1323.
[4]   Shi D S, Shao H F. Research progress on bacterial biofilm infections. Journal of Medical Postgraduates, 2011,24(12):1319-1323.
[5]   Gordon R J, Lowy F D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clinical Infectious Diseases, 2008,46(Supplement 5):S350-S359.
doi: 10.1086/589846
[6]   李曈曈, 唐佩福. 金黄色葡萄球菌生物膜形成与调控的研究进展. 中华医院感染学杂志, 2017,27(7):1673-1676.
[6]   Li T T, Tang P F. Research progress on the formation and regulation of Staphylococcus aureus biofilms. Chinese Journal of Hospital Infectious Diseases, 2017,27(7):1673-1676.
[7]   Chowdhary D, Tahir S, Legge M, et al. Transfer of dry surface biofilm in healthcare environment: the role of healthcare worker’s hands as vehicles. J Hosp Infect, 2018,100(3):e85-e90.
pmid: 29964099
[8]   Arciola C R, Campoccia D, Ravaioli S, et al. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in Cellular and Infection Microbiology, 2015,5(7).DOI: 10.3389/fcimb.2015.00007.
doi: 10.3389/fcimb.2015.00007
[9]   Vuong C, Voyich J M, Fischer E R, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cellular Microbiology, 2004,6(3):269-275.
pmid: 14764110
[10]   Heilmann C, Schweitzer O, Gerke C, et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Molecular Microbiology, 1996,20(5):1083-1091.
doi: 10.1111/j.1365-2958.1996.tb02548.x pmid: 8809760
[11]   Gerke C, Kraft A, Süssmuth R, et al. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem, 1998,273(29):18586-18593.
doi: 10.1074/jbc.273.29.18586 pmid: 9660830
[12]   Blevins J S, Elasri M O, Allmendinger S D, et al. Role of SarA in the pathogenesis of Staphylococcus aureus musculoskeletal infection. Infect Immun, 2003,71(1):516-523.
doi: 10.1128/iai.71.1.516-523.2003 pmid: 12496203
[13]   Fitzpatrick F, Humphreys H, O’Gara J P.Evidence for IcaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol, 2005,43(4):1973-1976.
doi: 10.1128/JCM.43.4.1973-1976.2005 pmid: 15815035
[14]   Cue D, Lei M G, Lee C Y. Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol, 2012,2:38.
doi: 10.3389/fcimb.2012.00038 pmid: 23061050
[15]   王晓红, 于录, 刘丽慧, 等. 桃柁酚对金黄色葡萄球菌生物膜及IcaA表达的抑制作用. 中国兽医科学, 2012,42(7):753-757.
[15]   Wang X H, Yu L, Liu L H, et al. Inhibition of taurophenol on S. aureus biofilm and IcaA expression. Chinese Veterinary Science, 2012,42(7):753-757.
[16]   Buchbinder E I, Dutcher J P, Daniels G A, et al. Therapy with high-dose Interleukin-2 (HD IL-2) in metastatic melanoma and renal cell carcinoma following PD1 or PDL1 inhibition. Journal for ImmunoTherapy of Cancer, 2019,7(1).DOI: 10.1186/s40425-019-0522-3.
doi: 10.1186/s40425-019-0522-3 pmid: 31801591
[17]   赵占中, 薛飞群. DNA疫苗的免疫佐剂. 中国动物传染病学报, 2010,18(2):79-86.
[17]   Zhao Z H, Xue F Q. Immune adjuvant for DNA vaccines. Chinese Journal of Animal Infectious Diseases, 2010,18(2):79-86.
[18]   鲜思美, 李鹏飞, 冯将, 等. 羊IL-2基因和羊口疮病毒B2L基因真核表达重组质粒联合免疫小鼠的效果评价. 中国预防兽医学报, 2017,39(8):663-667.
[18]   Xian S M, Li P F, Feng J, et al. Evaluation of the effect of sheep IL-2 gene and sheep aphthosis virus B2L gene eukaryotic expression recombinant plasmid combined immunization on mice. Chinese Journal of Preventive Veterinary Medicine, 2017,39(8):663-667.
[19]   Salek-Ardakani S, Croft M. Tumor necrosis factor receptor/tumor necrosis factor family members in antiviral CD8 T-cell immunity. Journal of Interferon Cytokine Research, 2010,30(4):205-218.
doi: 10.1089/jir.2010.0026 pmid: 20377415
[1] SUN Si,QIU Yu-lan,YAN Ju-rong,YANG Jing,WU Guang-ying,WANG Lin,XU Wen-chun. Recombinant Plasmid pcDNA3-dnaJ Prime/DnaJ Protein Boost Immunization Induce Th1/Th17 Immune Responses and Protect Mice Against Pneumococcal Infection[J]. China Biotechnology, 2019, 39(12): 9-17.
[2] Qiao-li LANG,Lin YU,Qi-lin HE,Liang-peng GE,Xi YANG. Construction and Screening of a Phage Display Library of Single Chain Fv Antibody Efficiently from Mouse Immunized with Ovalbumin[J]. China Biotechnology, 2018, 38(11): 25-31.
[3] WANG Dan-yang, YANG Yu, YANG Xiu-mei, ZHANG Fu-chun, WU Dao-cheng, ZHANG Ai-lian. The Efficacy of PolyI:C and IL-15 as Adjuvant the Murine Zona Pellucid 3 DNA Vaccine Intranasally Immunized[J]. China Biotechnology, 2015, 35(9): 7-13.
[4] WANG Qing, XU Yan-zhao, WEI Xiao-xiao, WANG Qiu-xia, HANG Bo-lin, SUN Ya-wei, WANG Fei-fei, HU Jian-he . Preparation of Polyclonal Antiserums of GP5a Protein of Porcine Reproductive and Respiratory Syndrome Virus[J]. China Biotechnology, 2015, 35(8): 38-43.
[5] WANG Jin-sheng, JIANG Hao-wu, ZHANG Jin-xia, PAN Lei, ZHAO Feng-zhi, YU Yun-fei, CAI Ya-xiong, DENG Ning. Optimized Expression of a Mouse-human Chimeric Antibody Production in HEK 293T Cells Against Human FGF2[J]. China Biotechnology, 2014, 34(5): 14-22.
[6] PANG Min, WANG Hai-long, GUO Min, GUO Rui. Construction of an Eukaryocyte Expression Vector of Human ANKRD49 and the Study of Function and RNA Interference Target of ANKRD49[J]. China Biotechnology, 2014, 34(10): 15-21.
[7] ZHANG Biao, TONG Lin, YI Shan, ZHANG Guang-ming, LI Hong-jun, SUN Mao-sheng, CHEN Dong. Effects of Humoral Immune Response Vaccinated by Sequential Inactivated-live Rotavirus Vaccine[J]. China Biotechnology, 2013, 33(2): 14-20.
[8] LIU Yu-fen, DONG Li-li, SUN Yu-gang, LIU Peng, CHEN Hui, ZHAO Wen-ge. Expression and Function of Fibrinolytic Enzyme Gene from Gloydius intermediu Venom Gland[J]. China Biotechnology, 2012, 32(10): 1-6.
[9] XU Wen-qi, CHAI Xiao-jie, ZHANG Ting, DAI Jing-yu, ZHANG Xiao-lin. Construction of Trypsin Inhibitor KSTI3 Gene New Eukaryotic Expression System and Expression in Dunaliella salina[J]. China Biotechnology, 2011, 31(8): 29-34.
[10] ZHANG Ping-jing, LI Zhong-ming, LIU Qing-liang. The Development of a Modified and Simple Process for the Purification of Plasmid DNA[J]. China Biotechnology, 2011, 31(04): 106-112.
[11] FANG Jing, ZHOU Ying, LI Zhi-hui, DA Fei, HU Yao-lei, MAO Jian-ping. Eukaryotic Expression and Purification of Mouse CTLA-4 Outermembrane Segment[J]. China Biotechnology, 2010, 30(11): 61-64.
[12] . Examination DNA vaccine-binding proteins in the immune cells[J]. China Biotechnology, 2010, 30(10): 0-0.
[13] ZHONG Yi-wei, LI Jin-yao, GENG Shuang, WANG Bin. Examination DNA Vaccine-binding Proteins in the Immune Cells[J]. China Biotechnology, 2010, 30(10): 12-16.
[14] . Research in Bacterial Ghost as DNA VaccineDelivery System[J]. China Biotechnology, 2010, 30(07): 0-0.
[15] ZHANG Ji-Wen, YANG Gui-Lian, WANG Chun-Feng. The Use of Retroviral Vector in Genetically Engineering Vaccine[J]. China Biotechnology, 2010, 30(06): 130-133.