Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (9): 41-47    DOI: 10.13523/j.cb.20170906
    
Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii
LIU Cui-cui1, HU Meng-die1, WANG Zhi1, DAI Jun1, YAO Juan2, LI Pei2, LI Zhi-jun2, CHEN Xiong1, LI Xin1
1. Key Labortory of Fermentation Engineering(Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
2. Hubei Angel Yeast Limited by Share Ltd, Yichang 443003, China
Download: HTML   PDF(837KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Trehalose synthesis is an important pathway to protect cell against environmental stress. The metabolic characteristics of Zygosaccharomyces rouxii CCTCC M2013310 under three different trehalose fermentation control strategies included batch, fed-batch and fed-batch conbined control temperature in 10L fermentation tank are studied. The results from chromatographic analysis show that lactic acid, pyruvate and α-ketoglutaric acid are significantly affected by different fermentation modes. However, there is no significant difference between the total content of glutamic acid and glutamine in the three fermentation control process. These results show that the accumulation of intracellular trehalose is effected by the cell reduction force balance pathway and the metabolic regulation of carbon and nitrogen metabolism. The results provid a new idea for the metabolic engineering of Z. rouxii CCTCC M2013310 to make the high concentration of endogenous trehalose yeast cell.

Key wordsTrehalose      Zygosaccharomyces rouxii      Organic acid      Fermentation regulation      Amino acid     
Received: 22 March 2017      Published: 25 September 2017
ZTFLH:  Q493.4  
Cite this article:

LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii. China Biotechnology, 2017, 37(9): 41-47.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170906     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I9/41

[1] 陈彬, 鲁绯, 王夫杰, 等. 耐盐酵母菌对发酵酱油风味作用及其应用的研究进展. 中国酿造, 2010, 29(6):1-3. Chen B, Lu F, Wang F J, et al. Effect of salt-tolerant yeast on the flavor of soy sauce and its research progress. China Brewing, 2010, 29(6):1-3.
[2] 胡梦蝶, 陈雄, 李欣, 等. 不同胁迫条件对鲁氏酵母胞内海藻糖积累的影响研究. 食品工业科技, 2016, 37(11):130-133. Hu M D, Chen X, Li X,et al. Intracellular trehalose metabolism characteristics of Zygosaccharomyces rouxii under different stresses. Science and Tecnology of Food Industry, 2016,37(11):130-133.
[3] Argüelles J C. Physiological roles of trehalose in bacteria and yeasts:a comparative analysis. Archives of Microbiology, 2000, 174(4):217-224.
[4] 王碧莹, 孙溪, 肖冬光. 内源与(或)外源海藻糖对面包酵母耐冷冻性的影响研究. 酿酒科技, 2015,258(12):4-6, 11. Wang B Y, Sun X, Xiao D G. Effects of endogenous and/or exogenous trehalose on freezing-tolerance of baker's yeast. Brewing Technology, 2015,258(12):4-6, 11.
[5] 方华, 李灏. 海藻糖与热激蛋白在酿酒酵母耐受乙醇胁迫中的作用. 中国生物工程杂志, 2014, 34(6):84-89. Fang H, Li H. The Roles of trehalose and heat shock proteins for enhancing ethanol tolerance of Saccharomyces cerevisiae. China Biotechnology, 2014, 34(6):84-89.
[6] 谭海刚, 董健, 王光路, 等. 中性海藻糖酶基因缺失对面包酵母耐冷冻性的影响.现代食品科技, 2014,30(2):66-71, 16. Tan H G, Dong J, Wang G L, et al. Effect of neutral trehalase genes deletion on the freeze-tolerant characteristics of bread yeast. Modern Food Science and Technology, 2014,30(2):66-71, 16.
[7] 陈丽君, 肖冬光, 郭学武, 等. 面包酵母海藻糖含量与酵母耐性之间的关系. 食品工业科技, 2011, 32(8):112-114. Chen L J, Xiao D G, Guo X W, et al. Correlation between the trehalose content and the stress resistance of the baker yeasts. Science and Tecnology of Food Industry, 2011, 32(8):112-114.
[8] 程书梅, 王昌禄, 顾金兰, 等. 海藻糖对耐盐酵母的影响. 中国酿造, 2005, 24(8):8-11. Cheng S M, Wang C L, Gu J L, Chen MH, et al. Effect of trehalose on salt-tolerant yeast. China Brewing, 2005, 24(8):8-11.
[9] 吴苏生, 白亮, 郑祖亮, 等. 低温锻炼对酿酒酵母发酵特性的影响. 中国酿造, 2015, 34(5):56-59. Wu S S, Bai L, Zhen Z L, Zhang Z L, et al. Effects of low-temperature adaptation on fermentation characteristics of Saccharomyces cerevisia. China Brewing, 2015, 34(5):56-59.
[10] Wang P M, Zheng D Q, Chi X Q, et al. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Bioresource Technology, 2014, 152:371-376.
[11] Sasano Y, Haitani K, Hashida K, et al. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. Journal of Bioscience and Bioengineering, 2012, 113(5):592-595.
[12] Li H, Wang H L, Du J, et al. Trehalose protects wine yeast against oxidation under thermal stress. World Journal of Microbiology and Biotechnology, 2010, 26(6):969-976.
[13] Yoshiyama Y, Tanaka K, Yoshiyama K,et al. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid. Journal of Bioscience and Bioengineering, 2015, 119(2):172-175.
[14] Tapia H, Young L, Fox D, et al. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proceedings of the National Academy of Science of the United States of America, 2015, 112(19):6122-6127.
[15] Glatz A, Pilbat A M, Németh G L, et al. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress and Chaperones, 2016, 21(2):327-338.
[16] Tan H G, Dong J, Wang G L, et al. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. J Ind Microbiol Biotechnol, 2014, 41(8):1275-1285.
[17] Pérez-Torrado R, Matallana E. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism. Biotechnology Progress, 2015, 31(1):20-24.
[18] Dong J, Chen D D, Wang G L, et al. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1. J Ind Microbiol Biotechnol, 2016, 43(6):817-828.
[19] 周利, 汤岳琴, 孙照勇, 等. 基于连续发酵驯化的高耐盐性酿酒酵母的育种. 应用与环境生物学报, 2014, 20(3):363-370. Zhou L, Tang Y Q, Sun Z Y, et al. Breeding of high salt-tolerant Saccharomyces cerevisiae strains based oncontinuous ethanol fermentation. Chin J Appl Environ Biol, 2014, 20(3):363-370.
[20] Qiao C Q, Jia S R, Dai Y J, et al. Trehalose biosynthesis enhancement for six yeast strains under pressurized culture. Applied Biochemistry and Biotechnology, 2010, 160(2):613-620.
[21] 赵玉巧, 仲美荣, 顾玲玲, 等. 海洋中海藻糖产生菌的筛选及发酵条件优化. 微生物学杂志, 2010, 30(3):50-54. Zhao Y Q, Zhong M R, Gu L L, et al. Screening and fermentation optim ization of trehalose-producing strain from marine. Jouranl of Microbiology, 2010, 30(3):50-54.
[22] Chi Z, Wang J M, Chi Z M, et al. Trehalose accumulation from corn starch by Saccharomycopsis fibuligera A11 during 2-l fermentation and trehalose purification. Journal of Industrial Microbiology and Biotechnology,2010, 37(1):19-25.
[23] 朴春红, 刘仁杰, 王丹, 等. 酵母体内海藻糖定量方法研究. 食品科技, 2010, 35(6):284-286. Piao C H, Liu R J, Wang D, et al. Study of trehalose quantitative analysis of yeast extract. Food Science and Technology. 2010, 35(6):284-286.
[24] 谭海刚, 梅英杰, 关凤梅, 等. 蒽酮-硫酸法测定酵母中海藻糖的含量. 现代食品科技, 2006, 22(1):25-126, 128. Tan H G, Mei Y J, Guan F M, et al. Determination of trehalose content by anthrone-sulphuric acid colorimetric method. Modern Food Science and Technology, 2006,22(1):125-126, 128.
[25] Tao X M, Liu Y M, Wang Y H, et al. GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia. Analytical and Bioanalytical Chemistry, 2008, 391(8):2881-2889.
[26] Gu P F, Su T Y, Qi Q S. Novel technologies provide more engineering strategies for amino acid-producing microorganisms. Applied Microbiology and Biotechnology, 2016, 100(5):2097-2105.
[27] Chen Y, Jens N. Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology,2016, 37:165-172.
[1] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[2] LIAO Dan-ni,ZHANG Zhao-yang,JIN Jin,LI Xia,JIA Bin. Progress in the Study of Microbial tRNA and Genetic Codon System Related Applications[J]. China Biotechnology, 2021, 41(4): 64-73.
[3] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[4] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[5] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[6] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[7] Er-shu XUE,Qian-qian SONG,Kai-ren TIAN,Jian-jun QIAO,Cai-yin QINGGELE. Research Progress in the Biosynthesis and Regulation of D-amino Acids in Bacterial[J]. China Biotechnology, 2019, 39(4): 106-113.
[8] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[9] ZHAO Shuang, LIU Liu, WU Lin-huan, MA Jun-cai. Research and Development Trend of the Technology on Corynebacterium glutamicum[J]. China Biotechnology, 2016, 36(9): 101-109.
[10] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[11] WAN Fang, CHEN Min-liang, ZHANG Bin, CHEN Jin-cong, CHEN Xue-lan. Strategy of Metabolic Engineering Microorganism for High Yield Amino Acids[J]. China Biotechnology, 2015, 35(3): 99-103.
[12] HUANG Xiang-feng, WANG Yi-han, LIU Jia-nan, LIU Jia, LU Li-jun. Research Progress in the Impacts of Promoting Factors on Biosurfactants Synthesis[J]. China Biotechnology, 2014, 34(7): 81-88.
[13] ZHAO Feng, ZHANG Yi-jun, RAN Yan-hong, WANG Xing-yong, YE Qian-jun, LI Hong-jian. Analysis of rhIL-12 Disulfide Bond And N-glycosylation Sites and C-terminal Amino Acid Sequence[J]. China Biotechnology, 2014, 34(5): 39-53.
[14] FANG Hua, LI Hao. The Roles of Trehalose and Heat Shock Proteins for Enhancing Ethanol Tolerance of Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 84-89.
[15] LUO Feng, DUAN Xu-guo, SU Ling-qia, WU Jing. Cloning,Expression and Fermentation Optimization of Thermobifida fusca Trehalose Synthase Gene in E.coli[J]. China Biotechnology, 2013, 33(8): 98-104.