Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (06): 84-89    DOI: 10.13523/j.cb.20140612
    
The Roles of Trehalose and Heat Shock Proteins for Enhancing Ethanol Tolerance of Saccharomyces cerevisiae
FANG Hua, LI Hao
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
Download: HTML   PDF(404KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

During the process of bioethanol production, Saccharomyces cerevisiae cells are often stressed by the accumulated ethanol, which can lead to inhibition of S. cerevisiae growth and low bioethanol yield. To maintain the survival, S. cerevisiae cells have evolved a set of stress responses to environmental stimuli including ethanol stress. Fully understanding the mechanism of S. cerevisiae responses to ethanol will facilitate the development of strategies to improve the ethanol tolerance of S. cerevisiae and contribute to the construction of industrial feasible strains with high bioethanol yield. Under the stress of accumulated ethanol, some protectants, such as trehalose, heat shock proteins (HSPs), and proline can improve the ethanol tolerance of S.cerevisiae cells. As an important carbon source and energy storage material, trehalose can not only stabilize the cell membranes, proteins and nucleic acids, but also enhance the ethanol tolerance of S. cerevisiae. Furthermore, the up-regulation of HSPs can also improve the ethanol tolerance of S. cerevisiae cells. The progresses of protective roles of trehalose and HSPs for enhancing the ethanol tolerance of S. cerevisiae were focused on.



Key wordsSaccharomyces cerevisiae      Ethanol stress      Trehalose      Heat shock protein     
Received: 22 October 2013      Published: 25 June 2014
ZTFLH:  Q819  
Cite this article:

FANG Hua, LI Hao. The Roles of Trehalose and Heat Shock Proteins for Enhancing Ethanol Tolerance of Saccharomyces cerevisiae. China Biotechnology, 2014, 34(06): 84-89.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140612     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I06/84


[1] Gonzalez P. Energy Use, Human. In Levin SA ed. Encyclopedia of Biodiversity. 2nd ed. Waltham, MA: Academic Press, 2013.250-266.

[2] Bai F W, Anderson W A, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 2008, 26 (1): 89-105.

[3] de Llanos R, Llopis S, Molero G, et al. In vivo virulence of commercial Saccharomyces cerevisiae strains with pathogenicity-associated phenotypical traits. International Journal of Food Microbiology, 2011, 144 (3): 393-399.

[4] Piper P W. The heat shock and ethanol stress response of yeast exhibit extensive similarity and functional overlap. FEMS Microbiology Letters, 1995, 134 (2-3): 121-127.

[5] Birch R M, Walker G M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2000, 26 (9-10): 678-687.

[6] Sree N K, Sridhar M, Suresh K, et al. Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresource Technology, 2000, 72 (1): 43-46.

[7] Querol A, Femandez-Espinar M T, Delolmo M, et al. Adaptive evolution of wine yeast. International Journal of Agricultural and Food Chemistry, 2003, 86 (1/2): 3-10.

[8] Hiraishi H, Okada M, Ohtsu I, et al. A functional analysis of the yeast ubiquitin ligase Rsp5: the involvement of the ubiquitin-conjugating enzyme Ubc-4 and poly-ubiquitination in ethanol-induced down-regulation of targeted proteins. Bioscience Biotechnology and Biochemistry, 2009, 73 (10): 2268-2273.

[9] Kubota S, Takeo L, Kume K, et al. Effect of ethanol on cell growth of budding yeast: genes those are important for cell growth in the presence of ethanol. Bioscience Biotechnology and Biochemistry, 2004, 68 (4): 968-972.

[10] Dinh T N, Nagahisa K, Hirasawa T, et al. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE, 2008, 3 (7): e2623.

[11] Ma M, Liu Z L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010, 87 (3): 829-845.

[12] Araki Y, Wu H, Kitagaki H, et al. Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2009, 107 (1): 1-6.

[13] Ma M, Han P, Zhang R, et al. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress. Canadian Journal of Microbiology, 2013, 59 (9): 589-597.

[14] Ding J M, Huang X W, Zhang L M, et al. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2009, 85 (2): 253-263.

[15] Hu X H, Wang M H, Tan T, et al. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics, 2007, 175 (3): 1479-1487.

[16] Teixeira M C, Raposo L R, Mira N P, et al. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Applied and Environmental Microbiology, 2009, 75 (18): 5761-5772.

[17] Shioya S, Hirasawa T, Yoshikawa K, et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology, 2007, 131 (1): 34-44.

[18] Li H, Ma M L, Luo S, et al. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. International Journal of Biochemistry & Cell Biology, 2012, 44 (7): 1087-1096.

[19] Hong M E, Lee K S, Yu B J, et al. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Journal of Biotechnology, 2010, 149 (1-2): 52-59.

[20] Chandler M, Stanley G A, Rogers P, et al. A stress response in the yeast Saccharomyces cerevisiae. Annals of Microbiology, 2004, 54 (4): 427-454.

[21] Wu H, Zheng X, Araki Y, et al. Global gene expression analysis of yeast cells during sake brewing. Applied and Environmental Microbiology, 2006, 72 (11): 7353-7358.

[22] Gibson B R, Lawrence S J, Leclaire J P, et al. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiology Reviews, 2007, 31(5): 535-569

[23] Sharma S C. A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiology Letters, 1997, 152 (1): 11-15.

[24] Jules M, Beltran G, Franois J, et al. New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH 2 encodes a functional cytosolic trehalase, and deletion of TPS 1 reveals Ath1p-dependent trehalose mobilization. Applied and Environmental Microbiology, 2008, 74 (3): 605-614.

[25] Elbein A D, Pan Y T, Pastuszak I, et al. New insights on trealose: a multifunctional molecule. Glycobiology, 2003, 13 (4): 17-27.

[26] Mahmud S A, Hirasawa T, Furusawa C, et al. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. Journal of Bioscience and Bioengineering, 2012, 113 (4): 526-528.

[27] Van Dijck P, Colavizza D, Smet P, et al. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Applied and Environmental Microbiology, 1995, 61 (1): 109-115.

[28] Eleutherio E C, Araujo P S, Panek A D. The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. Biochimica et Biophysica Acta-biomembranes, 1993, 1156 (3): 263-266.

[29] Crowe J H, Carpenter J F, Crowe L M. The role of vitrification in anhydrobiosis. Annual Review of Physiology, 1998, 60: 73-103.

[30] Benaroudj N, Lee D H, Goldberg A L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. Journal of Biological Chemistry, 2001, 276 (26): 24261-24267.

[31] Avonce N, Mendoza-Vargas A, Morett E, et al. Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 2006, 6: 109.

[32] Voit E O. Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. Journal of Theoretical Biology, 2003, 223 (1): 55-78.

[33] Bell W, Klaassen P, Ohnacker M, et al. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. European Journal of Biochemistry, 1992, 209 (3): 951-959.

[34] Vuorio O E, Kalkkinen N, Londesborough J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. European Journal of Biochemistry, 1993, 216 (3): 849-861.

[35] De Virgilio C, Bürckert N, Bell W, et al. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. European Journal of Biochemistry, 1993, 212 (2): 315-323.

[36] Jules M, Beltran G, Parrou J L. New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH 2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Applied and Environmental Microbiology, 2008, 74 (3): 605-614.

[37] Kopp M, Müller H, Holzer H. Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1993, 268 (7): 4766-4774.

[38] Alizadeh P, Klionsky D J. Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiae. FEBS Letters, 1996, 391 (3): 273-278.

[39] Alexandre H, Dequin S, Blondin B, et al. Global gene expression during short term ethanol stress in Saccharomyces cerevisiae. FEBS Letters, 2001, 498 (1): 98-103.

[40] Lucero P, Moreno E, Lagunas R, et al. Internal trehalose protects from inhibition by ethanol in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2000, 66 (10): 4456-4461.

[41] Mahmud S A, Hirasawa T, Shimizu H. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. Journal of Bioscience and Bioengineering, 2000, 109 (3): 262-266

[42] Kwon H B, Yeo E T, Hahn S E, et al. Cloning and characterization of genes encoding trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatese from Zygocaccharomyces rouxii. FEMS Yeast Research, 2003, 3 (4): 433-440.

[43] Glover J R, Lindquist S. Hsp104, Hsp70, and Hsp40. Cell, 1998, 94 (1): 73-82.

[44] Sanchez Y, Taulien J, Borkovich K A, et al. Hsp104 is required for tolerance to many forms of stress. EMBO Journal, 1992, 11 (6): 2357- 2364.

[45] Alexandre H, Ansanay-Galeote V, Dequin S, et al. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Letters, 2001, 498 (1): 98-103.

[46] Izawa S, Kita T, Ikeda K, et al. Heat shock and ethanol stress provoke distinctly different responses in 3-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochemical Journal, 2008, 414 (1): 111-119.

[47] Morano K A, Liu P C, Thiele D J. Protein chaperones and the heat shock response in Saccharomyces cerevisiae. Current Opinion in Microbiology, 1998, 1 (2): 197-203.

[48] Elliott B, Haltiwanger R S, Futcher B. Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics, 1996, 144 (3): 923-933.

[49] Son H S, Hwang G S, Kim K M, et al. 1H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains. Analytical Chemistry, 2009, 81 (3): 1137-1145.

[50] Ye Y, Zhu Y, Pan L, et al. Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways. Biochemical and Biophysical Research Communications, 2009, 385 (3): 357-362.

[1] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[2] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[3] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[4] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.
[5] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[6] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[7] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[8] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[9] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[10] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[11] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[12] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[13] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[14] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[15] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.