Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (7): 81-88    DOI: 10.13523/j.cb.20140713
    
Research Progress in the Impacts of Promoting Factors on Biosurfactants Synthesis
HUANG Xiang-feng, WANG Yi-han, LIU Jia-nan, LIU Jia, LU Li-jun
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
Download: HTML   PDF(426KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Biosurfactants are a class of surface active metabolites produced by microorganisms. Compared with chemical surfactants, biosurfactants have the advantages of high biodegradability, low toxicity, and high efficiency. Summarizes the research progress in the impacts of promoting factors such as amino acids, yeast extracts, metal ions and organic acids on yield, structure and homologue composition of biosurfactants. In addition, the promoting mechanisms of these factors on biosurfactant production are also concluded. At the end of this review, the prospect on this field are introduced.



Key wordsBiosurfactants      Amino acids      Yeast extracts      Metal ions      Organic acids     
Received: 12 May 2014      Published: 25 July 2014
ZTFLH:  Q819  
Cite this article:

HUANG Xiang-feng, WANG Yi-han, LIU Jia-nan, LIU Jia, LU Li-jun. Research Progress in the Impacts of Promoting Factors on Biosurfactants Synthesis. China Biotechnology, 2014, 34(7): 81-88.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140713     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I7/81


[1] Maier R, Soberon-Chavez G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 2000, 54(5): 625-633.

[2] Kim H S, Yoon B D, Choung D H, et al. Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY16. Applied Microbiology and Biotechnology, 1999, 52(5): 713-721.

[3] Shavandi M, Mohebali G, Haddadi A, et al. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Colloids and Surfaces B: Biointerfaces, 2011, 82(2): 477-482.

[4] Rahman PK, Gakpe E. Production, characterisation and applications of biosurfactants-review. Biotechnology, 2008, 7(2).

[5] Makkar R, Cameotra S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 2002, 58(4): 428-434.

[6] Banat I M, Makkar R S, Cameotra S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53(5): 495-508.

[7] Banat I M, Franzetti A, Gandolfi I, et al. Microbial biosurfactants production applications and future potential. Applied Microbiology and Biotechnology, 2010, 87(2): 427-444.

[8] Muthusamy K, Gopalakrishnan S, Ravi T K, et al. Biosurfactants: properties commercial production and application. Current Science 2008, 94(6): 736-747.

[9] Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends in Biotechnology, 2006, 24(11): 509-515.

[10] Chandankere R, Yao J, Choi M M F, et al. An efficient biosurfactant-producing and crude-oil emulsifying bacterium Bacillus methylotrophicus USTBa isolated from petroleum reservoir. Biochemical Engineering Journal, 2013, 74: 46-53.

[11] Haba E, Espuny M, Busquets M B, et al. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology, 2000, 88(3): 379-387.

[12] Rufino R D, Sarubbo L A, Campos-Takaki G M. Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World Journal of Microbiology and Biotechnology, 2007, 23(5): 729-734.

[13] Sobrinho H, Rufino R D, Luna J M, et al. Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochemistry, 2008, 43(9): 912-917.

[14] Joshi S, Bharucha C, Jha S, et al. Biosurfactant production using molasses and whey under thermophilic conditions. Bioresource Technology, 2008, 99(1): 195-199.

[15] Nitschke M, Pastore G M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technology, 2006, 97(2): 336-341.

[16] Banat I M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 1995, 51(1): 1-12.

[17] Soberón-Chávez G, Lépine F, Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2005, 68(6): 718-725.

[18] Franzetti A, Gandolfi I, Bestetti G, et al. Production and applications of trehalose lipid biosurfactants. European Journal Of Lipid Science And Technology, 2010, 112(6): 617-627.

[19] 李敬龙, 刘晔, 潘爱珍. 生物表面活性剂及其应用. 山东轻工业学院学报: 自然科学版, 2004, 18(2): 41-46. Li J L, Liu Y, Pan A Z. Biosurfactants and their application. Journal of Shandong Institute of Light Industry, 2004, 18(2):41-46.

[20] Chang J S, Radosevich M, Jin Y, et al. Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants. Environmental Toxicology and Chemistry, 2004, 23(12): 2816-2822.

[21] Wu X, Ding H, Yue M, et al. Gene cloning expression and characterization of a novel trehalose synthase from Arthrobacter aurescens. Applied Microbiology and Biotechnology, 2009, 83(3): 477-482.

[22] Pirog T P, Shevchuk T A, Voloshina I N, et al. Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Applied Biochemistry and Microbiology, 2004, 40(5): 470-475.

[23] Pirog T P, Antonyuk S I, Karpenko Y V, et al. The influence of conditions of Acinetobacter calcoaceticus K-4 strain cultivation on surface-active substances synthesis. Applied Biochemistry and Microbiology, 2009, 45(3): 272-278.

[24] Pirog T P, Grytsenko N A, Khomyak D I, et al. Optimization of surface-active substances synthesis by Nocardia vaccinii K-8 during bioconversion of wastes of biodiesel production. Microbiologichny Zhurnal (in russian), 2011, 73(4): 15-24.

[25] Zhang L, Somasundaran P, Singh S K, et al. Synthesis and interfacial properties of sophorolipid derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 240(1): 75-82.

[26] Mulligan C N. Environmental applications for biosurfactants. Environmental Pollution, 2005, 133(2): 183-198.

[27] Dörner U, Schiffler B, Lanéelle M-A, et al. Identification of a cell-wall channel in the corynemycolic acidfree gram-positive bacterium Corynebacterium amycolatum. International Microbiology, 2010, 12(1): 29-38.

[28] Yamane T. Enzyme technology for the lipids industry: an engineering overview. Journal of the American Oil Chemists’ Society, 1987, 64(12): 1657-1662.

[29] Navon-Venezia S, Zosim Z, Gottlieb A, et al. Alasan a new bioemulsifier from Acinetobacter radioresistens. Applied and Environmental Microbiology, 1995, 61(9): 3240-3244.

[30] Jagta P S, Yavankar S, Pardesi K, et al. Production of bioemulsifier by Acinetobacter species isolated from healthy human skin. 2010, 48: 70-76.

[31] Viramontes-Ramos S, Portillo-Ruiz M C, Ballinas-Casarrubias M d L, et al. Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil. Brazilian Journal of Microbiology, 2010, 41(3): 668-675.

[32] Thavasi R, Jayalakshmi S, Balasubramanian T, et al. Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Letters in Applied Microbiology, 2007, 45(6): 686-691.

[33] Milner J L, Raffel S J, Lethbridge B J, et al. Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Applied Microbiology and Biotechnology, 1995, 43(4): 685-691.

[34] Wei Y H, Chu I M. Mn2+ improves surfactin production by Bacillus subtilis. Biotechnology Letters, 2002, 24(6): 479-482.

[35] Wei Y H, Wang L F, Chang J S. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnology Progress, 2004, 20(3): 979-983.

[36] A. Mohammad A M, Mabrouk A, Hassouna N. Optimization of surfactin production by Bacillus subtilis isolate BS5. Applied Biochemistry and Biotechnology, 2008, 150(3): 305-325.

[37] 黄翔峰, 詹鹏举, 彭开铭, 等. 培养基中铁离子对枯草芽孢杆菌 CICC 23659 发酵产脂肽的影响研究. 中国生物工程杂志, 2013, 33(006): 52-61. Huang X F, Zhan PJ, Peng K M, et al. Study on the influence of iron dosage in the medium on fermentation of lipopeptide produced by Bacillus subtilis CICC 23659. China Biotechnology, 2013, 33(006):52-61.

[38] Deshpande K L, Katze J, Kane J F. Effect of glutamine on enzymes of nitrogen metabolism in Bacillus subtilis. Journal of Bacteriology, 1981, 145(2): 768-774.

[39] Mukherjee S, Das P, Sivapathasekaran C, et al. Enhanced production of biosurfactant by a marine bacterium on statistical screening of nutritional parameters. Biochemical Engineering Journal, 2008, 42(3): 254-260.

[40] Reuter K, Mofid M R, Marahiel M A, et al. Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. The EMBO Journal, 1999, 18(23): 6823-6831.

[41] MM Y, HL F, KN T. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnology and Applied Biochemistry, 1996, 23(1): 13-18.

[42] Makker R S, Cameotra S. Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45℃. Institute of Microbial Technology, 2002, 5: 11-17.

[43] Bonmatin J-M, Labbé H, Grangemard I, et al. Production, isolation and characterization of-and surfactins from Bacillus subtilis. Letters in Peptide Science, 1995, 2(1): 41-47.

[44] Youssef N H, Duncan K E, Mclnerney M J. Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity. Applied and Environmental Microbiology, 2005, 71(12): 7690-7695.

[45] Schneiker S, Vítor A M d S, Bartels D, et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology, 2006, 24(8): 997-1004.

[46] 李啸, 储炬, 张嗣良, 等. 生物素与氨基酸对林可霉素生物合成的影响. 中国抗生素杂志, 2008, 33(1): 6-10. Li X, Chu J, Zhang S L, et al. Effect of biotin and amino acids on biosynthesis of lincomycin. Chinese Journal of Antibiotics, 2008, 33(1):6-10.

[47] Elibol M, Mavituna F. A kinetic model for actinorhodin production by Streptomyces coelicolor. Process Biochemistry, 1999, 34(6-7): 625-631.

[48] 夏东翔, 汪美先. L—异亮氨酸和甘氨酸对大肠杆菌表达与分泌邻苯二酚 2, 3—双加氧酶的作用. 微生物学报, 1994, 34(1): 37-44. Xia D X, Wang M X. Effect of L-isoleucine and glycine on catechol 2,3-dioxygenase expression and excretion in Escherichia coli. Acta Microbiologica Sinica, 1994, 34(1):37-44.

[49] 吕伟, 庄英萍, 储炬, 等. 氨基酸对利用红色糖多孢菌发酵生产红霉素的产量及组分影响研究. 中国抗生素杂志, 2006, 31(10): 595-599. Lv W, Zhuang Y P, Chu J, et al. Effects of amino acids on the yield and components of erythromycin by Saccharopolyspora erythraea. Chinese Journal of Antibiotics, 2006, 31(10):595-599.

[50] Liu H, Reynolds K A. Precursor supply for polyketide biosynthesis: the role of crotonyl-CoA reductase. Metabolic Engineering, 2001, 3(1): 40-48.

[51] Pirog T P, Korzh Y V, Shevchuk T A, et al. Peculiarities of C2 metabolism and intensification of the synthesis of surface-active substances in Rhodococcus erythropolis EK-1 grown in ethanol. Microbiology, 2008, 77(6): 665-673.

[52] Pirog T P, Shevchuk T A, Klimenko Y A. Intensification of surfactant synthesis in Rhodococcus erythropolis EK-1 cultivated on hexadecane. Applied Biochemistry and Microbiology, 2010, 46(6): 599-606.

[53] Pirog T, Konon A, Shevchuk T, et al. Intensification of biosurfactant synthesis by Acinetobacter calcoaceticus IMV B-7241 on a hexadecane-glycerol mixture. Microbiology, 2012, 81(5): 565-572.

[54] Pirog T, Sofilkanych A, Konon A, et al. Intensification of surfactants’ synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium. Food and Bioproducts Processing, 2013, 91(2): 149-157.

[55] Pirog T, Kuz'minskaya Y V. Some characteristics of central metabolism in Acinetobacter sp. grown on ethanol. Microbiology, 2003, 72(4): 408-413.

[56] Casas J, García-Ochoa F. Sophorolipid production by Candida bombicola: medium composition and culture methods. Journal of Bioscience and Bioengineering, 1999, 88(5): 488-494.

[57] de Gusmão C A, Rufino R D, Sarubbo L A. Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World Journal of Microbiology and Biotechnology, 2010, 26(9): 1683-1692.

[58] Konishi M, Nagahama T, Fukuoka T, et al. Yeast extract stimulates production of glycolipid biosurfactants mannosylerythritol lipids by Pseudozyma hubeiensis SY62. Journal of Bioscience and Bioengineering, 2011, 111(6): 702-705.

[59] Hommel R, Stiiwer O, Stuber W, et al. Production of water-soluble surface-active exolipids by Torulopsis apicola. Applied Microbiology and Biotechnology, 1987, 26(3): 199-205.

[60] Cooper D, Paddock D. Production of a biosurfactant from Torulopsis bombicola. Applied and Environmental Microbiology, 1984, 47(1): 173-176.

[1] LI Sheng. The Induction Effect of Metal Ions for Cell Autophagy[J]. China Biotechnology, 2017, 37(7): 124-132.
[2] CAO Ying-ying, DENG Dun, ZHANG Yun, SUN Ai-jun, XIA Fang-liang, HU Yun-feng. Cloning, Expression and Characterization of a Novel Psychrophile Lipase from the Deep Sea of the South China Sea[J]. China Biotechnology, 2016, 36(3): 43-52.
[3] GONG Yan-hui, MA San-mei, ZHANG Yun, WANG Yong-fei, HU Yun-feng. Functional Characterization of a Novel Microbial Psychrophilic Lipase and Its Utilization in Stereo-Selective Biocatalysis[J]. China Biotechnology, 2016, 36(10): 35-44.
[4] HUANG Xiang-feng, ZHAN Peng-ju, PENG Kai-ming, LIU Jia, LU Li-jun. Study on the Influence of Iron Dosage in the Medium on Fermentation of Lipopeptide Produced by Bacillus subtilis CICC 23659[J]. China Biotechnology, 2013, 33(6): 52-61.
[5] LU Ming-feng, KANG Shou-kai, ZHANG Yue-jie, ZHANG Hong-yu. Construction of a DNA Library in Small Cassette Encoding Random Peptide Consisting of 15 Amino Acids[J]. China Biotechnology, 2012, 32(02): 69-75.
[6] WANG Lan-lan, GAO Chao, ZHANG Long. Study on the Process of Enzymatic Hydrolysis of Fresh Antler Velvet[J]. China Biotechnology, 2011, 31(10): 39-44.
[7] Ya Dong Huang Ye Su Chang Cai Ding Min Jing Zhang Zhi Jian Su. The expression, purification and its activity of GST-SUMO-MT in E.coli[J]. China Biotechnology, 2007, 27(12): 11-16.