Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (1): 71-80    DOI: 10.13523/j.cb.20170111
    
Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores
ZHAO Yi-jin1,2, WANG Teng-fei1,2, WANG Jun-qing1,2, WANG Rui-ming1,2
1. QILU University of Technology, Jinan 250353, China;
2. Department of Biology Engineering, Jinan 250353, China
Download: HTML   PDF(1095KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Trehalose is a ubiquitous non-reducing disaccharide in nature, and is an excellent natural drying agent and preservative. Trehalose synthase capable of catalyzing the maltose directly into trehalose, and is the preferred production of trehalose. To obtain trehalose synthase having good catalytic surface, which is displayed in a highly efficient and stable surface of Bacillus subtilis, at the same experiments were selected enhanced green fluorescent protein (EGFP) and trehalose synthase (Tres) as a model protein, to come from Bacillus subtilis spore coat protein CotC as Bacillus subtilis anchored proteins displayed on the surface. Flow cytometry analysis of the situation in the spore surface display EGFP, the results showed that the capsid protein of Bacillus CotC can EGFP fixed spore surface. Then replace fluorescent protein gene egfp and trehalose synthase gene tres. The recombinant strains was hang up using pH 7.5 buffer suspension and the concentration of substrate for 30% of the maltose in 50℃ water bath roling 2h. Reaction products were analyzed by HPLC and the enzymatic activity can be detected, the enzyme activity of trehalose by calculating reached 252U/ml. This suggests that CotC is associated with the outer part of the coat. CotC can therefore be used as a molecular vehicle for spore surface display of exogenous proteins.



Key wordsTrehalose      Bacillus subtilis      Surface display      Recombinant expression      Trehalose synthase     
Received: 27 June 2016      Published: 25 January 2017
ZTFLH:  Q814.9  
Cite this article:

ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores. China Biotechnology, 2017, 37(1): 71-80.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170111     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I1/71

[1] Leslie S B, Israeli E, Lighthart B, et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Applied & Environmental Microbiology, 1995, 61(10):3592-3597.
[2] 齐向辉,陈华友,蒙健宗,等. 海藻糖在生物组织器官保护方面的新应用. 安徽农业科学,2009, 37(33):16729-16732. Qi X H, Chen H Y, Meng J Z, et al. Novel application of trehalose in the bioprotection of biological tissue and organ. Journal of Anhui Agricultural Sciences, 2009, 37(33):16729-16732.
[3] Elbein A D. The metabolism of alpha, alpha-trehalose.. Advances in Carbohydrate Chemistry & Biochemistry, 1974, 30:227-256.
[4] Avonce N, Mendoza-Vargas A, Morett E, et al. Insights on the evolution of trehalose biosynthesis. Bmc Evolutionary Biology, 2006, 6(1):1-15.
[5] Elbein A D, Pan Y T, Pastuszak I, et al. New insights on trehalose:a multifunctional molecule.. Glycobiology, 2003, 13(4):17R-27R.
[6] Benaroudj N, Lee D H, Goldberg A L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem, 2001,276(26):24261-24267.
[7] 靳文斌,李克文,胥九兵,等. 海藻糖的特性、功能及应用. 精细与专用化学品,2015, 23(1):30-33. Jin W B, Li K W, Xu J B, et al. The character and function of trehalose and its application. Fine & Specialty Chemicals, 2015, 23(1):30-33.
[8] Jules M, Beltran G, François J, et al. New insights into trehalose metabolism by Saccharomyces cerevisiae:NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization.. Applied & Environmental Microbiology, 2008, 74(3):605-614.
[9] 薛鸿毅,张莉,徐汝意,等. 酶法生产海藻糖研究进展. 中国食品添加剂,2011,(4):159-162. Xue H Y, Zhang L, Xu R Y, et al. Study on the production of trehalose through enzyme method. China Food Additives, 2011,(4):159-162.
[10] Ryu S I, Park C S, Cha J, et al. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii:Molecular cloning and characterization. Biochemical & Biophysical Research Communications, 2005, 329(2):429-436.
[11] Ryu S I, Kim J E, Kim E J, et al. Catalytic reversibility of Pyrococcus horikoshii trehalose synthase:Efficient synthesis of several nucleoside diphosphate glucoses with enzyme recycling. Process Biochemistry, 2011, 46(1):128-134.
[12] Kim H M, Chang Y K, Ryu S I, et al. Enzymatic synthesis of a galactose-containing trehalose analogue disaccharide by Pyrococcus horikoshii, trehalose-synthesizing glycosyltransferase:Inhibitory effects on several disaccharidase activities. Journal of Molecular Catalysis B Enzymatic, 2007, 49(1-4):98-103.
[13] Avonce N, Mendoza-Vargas A, Morett E, et al. Insights on the evolution of trehalose biosynthesis. Bmc Evolutionary Biology, 2006, 6(1):1-15.
[14] Yoshida M, Nakamura N, Horikoshi K. Production of trehalose from starch by maltose phosphorylase and trehalose phosphorylase from a strain of plesiomonas. Starch-Starke, 1997, 49(49):21-26.
[15] Woo E J, Ryu S I, Song H N, et al. Structural insights on the new mechanism of trehalose synthesis by trehalose synthase TreT from Pyrococcus horikoshii. Journal of Molecular Biology, 2010, 404(2):247-259.
[16] Wernerus H, Stahl S. Biotechnogical applications for surface-engineered bacteria. Biotechnology and Applied Biochemistry, 2004, 40(3):209-228.
[17] 余小霞,田健,伍宁丰. 枯草芽胞杆菌芽胞表面展示外源蛋白的研究进展. 中国农业科技导报,2013,15(5):31-38. Yu X X, Tian J, Wu N F. Research progress on Bacillus subtilis spore display of recombinant proteins. Journal of Agricultural Science & Technology, 2013, 15(5):31-38.
[18] 李倩,宁德刚,吴春笃. 以CotX为分子载体在枯草芽胞杆菌芽胞表面展示绿色荧光蛋白. 生物工程学报,2010, 26(2):264-269. Li Q, Ning D G, Wu C D. Surface display of GFP using CotX as a molecular vector on Bacillus subtilis spores. Chinese Journal of Biotechnology, 2010, 26(2):264-269.
[19] Ryu S I, Kim J E, Huong N T, et al. Molecular cloning and characterization of trehalose synthase from Thermotoga maritima, DSM3109:Syntheses of trehalose disaccharide analogues and NDP-glucoses. Enzyme & Microbial Technology, 2010, 47(6):249-256.
[20] 王贺,杨瑞金,华霄,等. 利用枯草芽孢衣壳蛋白表面展示β-半乳糖苷酶. 食品与发酵工业,,2012, 38(7):1-5. Wang H, Yang R J, Hua X, et al. Functional display of β-galactosidase on the spore surface of Bacillus subtilis using spore coat protein as anchor motif. Food & Fermentation Industries, 2012, 38(7):1-5.
[21] Tavassoli S, Hinc K, Iwanicki A, et al. Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst.Arch Microbiol, 2013, 195(3):197-202.
[22] Nicholson W L, Setlow P. In Molecular Biological Methods for Bacillus. Chichester:John Wiley and Sona Inc, 1990:391-450.
[23] Santos C A F, Rodrigues M A, Zucchi M I. Proceedings of the National Academy of Science of the United States of America. Pesquisa Agropecuária Brasileira, 2013.
[24] 郭夏丽, 狄源宁, 王岩. 枯草芽孢杆菌产芽孢条件的优化. 中国土壤与肥料, 2012,(3):99-103. Guo X L, Di Y N, Wang Y. Optimization of sporulation conditions of Bacillus subtilis. Soil & Fertilizer Sciences in China, 2012,(3):99-103.
[25] 邵引刚, 李峰, 孙辉,等. 海藻糖的应用及基因工程研究. 安徽农业科学, 2008, 36(3):857-859. Shao Y G,Li F,Sun H, et al. Study on the genetic engineering of trehalose and its application. Journal of Anhui Agricultural Sciences, 2008, 36(3):857-859.
[26] 薛鸿毅. 恶臭假单胞菌海藻糖合酶基因在大肠杆菌中的表达. 济南:山东轻工业学院, 食品与生物工程学院,2012. Xue H Y. Study on Expression of Trehalose Synthase Genes from Pseudomonas putida P06 in E.coli.Jinan:Shandong Polytechnic University, School of Food and Bioengineering,2012.
[27] Isticato R, Esposito G, Zilh o R, et al. Assembly of multiple CotC forms into the Bacillus subtilis spore coat. Journal of Bacteriology, 2004, 186(4):1129-1135.
[28] Isticato R, Cangiano G, Tran H T, et al. Surface display of recombinant proteins on Bacillus subtilis spores. Journal of Bacteriology, 2001, 183(21):6294-6301.

[1] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[2] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[3] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[4] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[5] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[6] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[7] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[8] HAN Ting-han,ONG Xue-mei,ING Ya-fang,U Chen,ZHANG Kun-xiao,AO song,U Heng-hao. Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus[J]. China Biotechnology, 2019, 39(10): 34-43.
[9] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[10] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.
[11] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[12] ZENG Jie. Development and Application of L-Asparaginase with Better Performance and Advances in Recombinant Expression[J]. China Biotechnology, 2017, 37(11): 123-131.
[13] HU Gui-yuan, YANG Tao-wei, RAO Zhi-ming, LIU Mei, XU Mei-juan, ZHANG Xian. Improved Production of 2,3-Butanediol by Enhancing the Level of Intracellular NADH and Activity of Acetoin Reductase[J]. China Biotechnology, 2016, 36(6): 57-64.
[14] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[15] HAO Wen-bo, JI Fang-ling, WANG Jing-yun, ZHANG Yue, WANG Tian-qi, CHE Wen-shi, BAO Yong-ming. Effects of D194G Mutant on meso-2, 3-Butanediol Dehydrogenase Catalytic Properties[J]. China Biotechnology, 2016, 36(1): 47-54.