Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (3): 79-87    DOI: 10.13523/j.cb.1907049
Orginal Article     
Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11
ZHAO Xiao-yan1,CHEN Yun-da1,ZHANG Ya-qian1,WU Xiao-yu1,2,WANG Fei1,2,**(),CHEN Jin-yin2
1 College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang 330045, China
2 Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, China
Download: HTML   PDF(1336KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The trehalose synthase (EC 2.4.1.245) from Myxococcus sp.V11 (TreS II) catalyzes the reversible interconversion of maltose and trehalose. The high catalytic activity and high conversion rate of maltose into trehalose of TreS II indicate that it has potential application in industrial production of trehalose. However, the thermal instability of TreS II limits its wide application in trehalose production. Objective:The effects of amino acid residues mutations on the thermal stability, optima of pH and temperature, and specific activity of TreS II were studied by site-directed mutagenesis. Methods: Site-directed mutation experiment of the two possible metal ion-binding sites (A283 and Y537) and the three sites (Q3, W374 and R449) in two regions which may correlate with thermostability by using overlapping PCR were performed. Mutants of A283R, Y537H, Q3D, W374D and R449Q were heterogeneous expressed in E.coli BL21(DE3). At the same time the specific activity, the optimum reaction temperature, the optimum pH and the thermal stability of mutants were compared with wild-type strain. Results: Mutation of Q3D, W374D, R449Q, A283R and Y537H enhanced the thermal stability, but did not affect the pH and temperature optima. Only the mutant R449Q reduced the specific activity. The modified enzymes A283R and Y537H showed 68% and the mutants Q3D, R449Q, W374D showed 35% of maximal activity after incubating in maltose substrate for 3h at 60℃ compared to only 20% activity for wild-type enzyme. Conclusion: These factors may render TreS II relatively more thermostable among mesophilic trehalose synthases. The thermophilic amino acid residues provided herein may provide guidance for further protein engineering in the design of stabilized enzymes.



Key wordsMyxococcus sp.V11      Trehalose synthase      Site-directed mutagenesis      Thermostability     
Received: 27 July 2019      Published: 18 April 2020
ZTFLH:  Q814  
Corresponding Authors: Fei WANG     E-mail: wangfei179@163.com
Cite this article:

ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11. China Biotechnology, 2020, 40(3): 79-87.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1907049     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I3/79

TreS II gene allele Mutagenic primer sets
Q3D-F ACGGATTGAATGATTGATGACCTCT
Q3D-R CTAAATCATTCAATCCGTGGCGGG
A283R-F CTGGTGACGGAGGACCGTACGCCGCTCG
A283R-R ACGGTCCTCCGTCACCAGCGACAGGAAG
W374D-F GGGACGCCGGTGCTCTATTACGGCGACG
W374D-R ATAGAGCACCGGCGTCCCCGGCAGCGAC
R449Q-F ATGGAGCGCATGGTGCAGATGGCAAGGA
R449Q-R CTGCACCATGCGCTCCATCCAGTTGAGC
Y537H-F TACGGTTACCGGTGGCACCGGATGGAGC
Y537H-R GTGCCACCGGTAACCGTACCCCTCCAGC
Table 1 Oligonucleotides used for site-directed mutagenesis
Fig.1 Sequence alignment of known trehalose synthases Three regions of highly conserved sequence that are shaded in gray boxes. Catalytic residues D202, E244 and E310 are indicated by (*). The metal-binding sites are indicated by (:). Coordinated amino acids with thermal stability are indicated by (.)
Fig.2 Agarose gel electrophoresis of site-directed mutagenesis tresII by overlapping PCR Lane M: λ Hind III marker; Lane 1: pET-29a-tresII(Q3D); Lane 2: pET-29a-tresII(A283R); Lane 3: pET-29a-tresII(W374D); Lane 4: pET-29a-tresII(R449Q); Lane 5: pET-29a-tresII(Y537H); Lane 6: pET-29a-tresII; Lane 7: pET-29a (+)
Fig.3 Analysis of the expression of the mutant enzymes on SDS-PAGE Lane M: Low molecular protein marker; Lane 1: Total protein of E. coli BL21(DE3) harboring pET-29a(+) - treS II (WT); Lane 2: Total protein of E. coli BL21(DE3) harboring pET-29a(+) - treS II (Q3D); Lane 3: Total protein of E. coli BL21(DE3) harboring pET-29a(+) - treS II (A283R); Lane 4 : Total protein of E. coli BL21(DE3) harboring pET-29a(+) - treS II (Y537H); Lane 5: Total protein of E.coli BL21(DE3) harboring pET-29a(+) - treS II (W374D); Lane 6: Total protein of E. coli BL21(DE3) harboring pET-29a(+) - treS II (R449Q); Lane 7: Total protein of E. coli BL21(DE3) harboring pET-29a(+)
Fig.4 Compared with optimum temperature of mutant and wild-type
Fig.5 Compared with optimum pH of recombinant mutant TreS II and wild-type
Fig.6 Compared with specific activity of mutant recombinant enzyme and wild-type
Fig.7 Comparison of thermal stability of WT and thermal stability of mutant enzymes(a) The thermal stability of WT and mutant enzymes on 40℃ (b) The thermal stability of WT and mutant enzymes on 50℃ (c)The thermal stability of WT and mutant enzymes on 60℃
[1]   Nwaka S, Holzer H . Molecular Biology of Trehalose and the Trehalases in the Yeast Saccharomyces cerevisiae. Progress in Nucleic Acid Research, 1997,58:197-237.
[2]   Elbein A D, Pan Y T, Irena P , et al. New insights on trehalose: a multifunctional molecule. Glycobiology, 2003,13(4):17R.
[3]   Elbein A D . The metabolism of α,α-trehalose. Adv Carbohyd Chem Biochem, 1974,30(8):227-256.
[4]   Shimakata T, Minatogawa Y . Essential role of trehalose in the synthesis and subsequent metabolism of corynomycolic acid in Corynebacterium matruchotii. Archives of Biochemistry Biophysics, 2000,380(2):331-338.
[5]   Liu J, Nikaido H . A mutant of Mycobacterium smegmatis defective in the biosynthesis of ycolic acids accumulates meromycolates. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(7):4011-4016.
[6]   Brodmann D, Schuller A, Ludwigmüller J , et al. Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe Interact, 2002,15(7):693-700.
[7]   Rolland F, Baena Gonzalez E . Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology, 2006,57(1):675-709.
[8]   Hottiger T, Virgilio C D, Hall M N , et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. Febs Journal, 2005,219(1‐2):187-193.
[9]   Hounsa C G, Brandt E V, Thevelein J , et al. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology, 1998,144(3):671-680.
[10]   刘俊梅, 聂海彦, 郑微微 , 等. 水生栖热菌FL-03海藻糖合酶基因的克隆及真核表达. 食品科学, 2010,31(23):267-270.
[10]   Liu J M, Nie H Y, Zheng W W , et al. Cloning and eukaryotic expression of trehalose synthase gene from Thermus aquaticus FL-03. Food Science, 2010,31(23):267-270.
[11]   Richards A B, Krakowka S, Dexter L B , et al. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chemical Toxicology, 2002,40(7):871-898.
[12]   李忠奎 . 海藻糖合酶基因在毕赤酵母中的克隆和表达. 济南: 齐鲁工业大学, 2014.
[12]   Li Z K . Cloning and expression of trehalose synthase gene in Pichia pastoris. Jinan: Qilu University of Technology, 2014.
[13]   Cai X, Seitl I, Mu W , et al. Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Applied Microbiology Biotechnology, 2018,102(12):1-12.
[14]   Jelsbak L, Sogaard-Andersen L . Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus. Journal of Microbiological Methods, 2003,55(3):829-839.
[15]   Mcbride M J, Zusman D R . Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus. Journal of Bacteriology, 1989,171(11):6383-6386.
[16]   Shi C, Lu X, Ma C , et al. Enhancing the thermostability of a novel β-agarase AgaB through directed evolution. Applied Biochemistry Biotechnology, 2008,151(1):51.
[17]   Zhang Y J, Xie M, Zhang X L , et al. Establishment of polyethylene-glycol-mediated protoplast transformation for Lecanicillium lecanii and development of virulence-enhanced strains against Aphis gossypii. Pest Management Science, 2016,72(10):1951-1958.
[18]   王飞, 李周坤, 周杰, 崔中利 . 定点突变对酰胺水解酶DamH可溶性表达和酶活的影响. 微生物学报, 2015,55(12):1584-1592.
[18]   Wang F , LiZ K, Zhou J,et al. Effect of site-directed mutagenesis on the soluble expression and specific activity of amide hydrolase DamH. Acta Microbiologica Sinica, 2015,55(12) : 1584-1592.
[19]   Nelson N . A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 1944,153(2):471-473.
[20]   Wei Y T, Zhu Q X, Luo Z F , et al. Cloning, Expression and identification of a new trehalose synthase gene from Thermobifida fusca Genome. Acta Biochimica Et Biophysica Sinica, 2004,36(7):477-484.
[21]   Yuan T, Pan, Vineetha KE , et al. Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Febs Journal, 2010,271(21):4259-4269.
[22]   Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 1976,72(1-2):248-254.
[23]   Chou H H, Chang S W, Lee G C , et al, Shaw JF. Site-directed mutagenesis improves the thermostability of a recombinant Picrophilus torridus trehalose synthase and efficiency for the production of trehalose from sweet potato starch. Food Chemistry, 2010,119(3):1017-1022.
[24]   Wang Y L, Sih-Yao C, Lin Y T , et al. Structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in catalysis of the intramolecular isomerization. Acta Crystallographica, 2015,70(12):3144-3154.
[25]   Wang J, Ren X, Wang R , et al. Structural characteristics and function of a new kind of thermostable trehalose synthase from Thermobaculum terrenum. Journal of Agricultural Food Chemistry, 2017,65(35):7726-7735.
[26]   Nishimoto T, Nakano M, Nakada T , et al. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Bioscience, Biotechnology, Biochemistry, 1996,60(4):640-644.
[27]   Lee J H, Lee K H, Kim C G , et al. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Applied Microbiology Biotechnology, 2005,68(2):213-219.
[28]   Chen Y S, Lee G C, Shaw J F . Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. Journal Of Agricultural Food Chemistry, 2006,54(19):7098-7104.
[29]   Tsusaki K, Nishimoto T, Nakada T , et al. Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC33923. Biochimica et Biophysica Acta -General Subjects, 1997,1334(1):28-32.
[30]   王宇凡, 朱碉明, 魏东盛 , 等. 利用定点突变分析海藻糖合酶的功能. 微生物学通报, 2009,36(5):658-665.
[30]   Wang Y F, Zhu Y M, Wei D S , et al. Functional analysis of trehalose synthase in Meiothermus ruber CBS-01 by site-directed mutation. Microbiology China, 2009,36(5):658-665.
[31]   Wang Y, Zhang J, Wang W , et al. Effects of the N-terminal and C-terminal domains of Meiothermus ruber CBS-01 trehalose synthase on thermostability and activity. Extremophiles Life Under Extreme Conditions, 2012,16(3):377-385.
[32]   Goihberg E, Dym O, Telor S , et al. A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Proteins Structure Function Bioinformatics, 2010,66(1):196-204.
[33]   Masayoshi S, Mika M, Keisuke N , et al. Role of proline residues in conferring thermostability on aqualysin I. Journal of Biochemistry, 2007,141(2):213-220.
[34]   Caner S, Nguyen N, Aguda A , et al. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology, 2013,23(9):1075-1083.
[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] MING Yue,ZHAO Zi-tong,WANG Hong-lei,LIANG Zhi-hong. Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis[J]. China Biotechnology, 2021, 41(10): 100-108.
[3] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[4] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[5] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[6] LIU Yan-juan, LI Xu-juan, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Fusing the Acyl Carrier Protein Enhances the Solubility and Thermostability of the Recombinant Proteins in Escherichia coli[J]. China Biotechnology, 2017, 37(7): 115-123.
[7] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[8] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[9] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[10] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[11] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[12] XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu. The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor[J]. China Biotechnology, 2016, 36(10): 15-20.
[13] LI Yao-yao, BI Jing, WANG Yi-hong, QIN Yun-he, ZHANG Xue-lian. Lysine-322 Acetylation Negatively Regulates Isocitrate Lyase of Mycobacterium tuberculosis[J]. China Biotechnology, 2015, 35(6): 8-13.
[14] GAO Rui-ping, CHENG Long-bin, LI Zhen-qiu. A Simple and Rapid Single Primer PCR Method for Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(5): 61-65.
[15] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.