Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (6): 9-16    DOI: 10.13523/j.cb.20190602
研究报告     
定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *
阚婷婷1,宗迅成2,苏永君1,王婷婷1,李闯2,胡蝶3,**(),邬敏辰3,**()
1 江南大学药学院 无锡 214122
2 江南大学生物工程学院 无锡 214122
3 江南大学无锡医学院 无锡 214122
Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether
Ting-ting KAN1,Xun-cheng ZONG2,Yong-jun SU1,Ting-ting WANG1,Chuang LI2,Die HU3,**(),Min-chen WU3,**()
1 School of Pharmaceutical Science,Jiangnan University,Wuxi 214122, China
2 School of Biotechnology,Jiangnan University,Wuxi 214122, China
3 Wuxi School of Medicine,Jiangnan University, Wuxi 214122, China
 全文: PDF(838 KB)   HTML
摘要:

环氧化物水解酶能够对外消旋环氧化物进行动力学拆分保留单构型的环氧化物。测定了菜豆环氧化物水解酶 (PvEH1) 针对苯基缩水甘油醚及其甲基衍生物的催化特性,并基于分子对接及多序列比对分析确定7个突变位点,通过单点和组合突变对PvEH1进行改造,以期改善PvEH1对邻甲基苯基缩水甘油醚 (1a)的催化特性。底物谱分析表明PvEH1对1a的催化活性 (157.2U/g湿细胞) 和对映选择性 (E=5.6) 最高。单点突变结果显示E.coli/pveh1 L105IE.coli/pveh1 V106I对1a的催化活性和对映选择性均有明显提高;L105I和V106I位组合突变菌株E.coli/pveh1 L105I/V106I的催化活性 (493.8U/g湿细胞) 是E.coli/pveh1的3.1倍,对映选择性 (E=8.3) 也提高至E.coli/pveh1的1.5倍。纯化后PvEH1 L105I/V106I的催化活性为17.6U/mg,是PvEH1的1.5倍,对1a的催化效率提高至PvEH1的2.1倍。SDS-PAGE分析表明提高了蛋白质的可溶性表达量。利用E.coli/pveh1 L105I/V106I全细胞催化100mmol/L 1a水解动力学拆分获得手性纯(R)-1a (ee>96%) 的产率和时空产率分别为31.2%和5.12g/(L·h),因此,在手性纯(R)-1a的制备中,E.coli/pveh1 L105I/V106I是一种颇具潜力的生物催化剂。

关键词: 环氧化物水解酶定点突变催化活性动力学拆分邻甲基苯基缩水甘油醚    
Abstract:

Epoxide hydrolases can catalyze the kinetic resolution of racemic epoxides,retaining enantiopure single enantiomers of epoxides. The catalytic properties of Phaseolus vulgaris epoxide hydrolase (PvEH1) towards phenyl glycidyl ether and its methyl derivates were assayed.Seven residues of PvEH1 were then selected for site-directed mutagenesis based on the results of molecular docking simulation and multiple sequence alignment,followed by single-site and combinatorial mutagenesis to obtain mutants possessing enhanced catalytic properties towards ortho-methylphenyl glycidyl ether (1a). The substrate spectrum analysis showed that PvEH1 displayed both the highest activity (157.2U/g wet cell) and enantioselectivity (E=5.6)towards 1a.Thus, 1a was selected as the model substrate.Among the constructed seven E.coli transformants expressing single-site mutant of PvEH1,E.coli/pveh1 L105I and E. coli/pveh1 V106I exhibited notably improved EH activity and E value.Compared with E.coli/pveh1, the EH activity and E value of E.coli/pveh1 L105I/V106I were improved by 2.1 times and 50%, respectively.Additionally,the specific activity (17.6U/mg) and the catalytic efficiency [17.7L/(mmol·s)]of purified PvEH1 L105I/V106I were 1.5-and 2.1-fold those of PvEH1. SDS-PAGE analysis indicated that the soluble expression level of target protein was enhanced by the combinatorial mutagenesis.The kinetic resolution of 100mmol/L 1a by E.coli/pveh1 L105I/V106I whole cells afforded (R)-1a (ee>96%)with 31.2% yield and a space-time yield of 5.12g/(L·h). Therefore, the superior enzymatic properties will make E.coli/pveh1 L105I/V106I a promising biocatalyst for the preparation of optically pure (R)-1a.

Key words: Epoxide hydrolase    Site-directed mutagenesis    Catalytic activity    Kinetic resolution    Ortho-methylphenyl glycidyl ether
收稿日期: 2018-11-17 出版日期: 2019-07-12
ZTFLH:  Q814.9  
基金资助: * 江苏省研究生科研与实践创新计划(JSCX17_0503);国家自然科学基金资助项目(21676117)
通讯作者: 胡蝶,邬敏辰     E-mail: Butterflystudy@163.com;biowmc@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
阚婷婷
宗迅成
苏永君
王婷婷
李闯
胡蝶
邬敏辰

引用本文:

阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.

Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether. China Biotechnology, 2019, 39(6): 9-16.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190602        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I6/9

Epoxides/diols* Mobile phase Molar extinction
coefficients (ε)
Retention time (min)
(R)-/(S)-epoxide (R)-/(S)-diol
1a/1b 8:2 0.965 3 6.521/8.019 8.914/9.873
2a/2b 8:2 0.887 1 6.845/10.059 8.423/16.341
3a/3b 9:1 1.163 8 7.368/8.701 15.130/21.799
4a/4b 8:2 0.938 1 7.511/10.791 8.951/15.675
表1  分析条件
Primer name Primer sequence (5'→3')
L105I-F CCATGATTGGGGAGCGATTGTAGGATGGTAC
V106I-F ATGATTGGGGAGCACTAATCGGATGGTACACA
M129L-F CTCAGCGTCCCTTTCCTGCCCAGAAACCCA
P137T-F CTAAGGTGAAGACAGTTGATGCCATGCG
M175I-F GAAGCAATCAAGAACATTCTGACAAGTAGGAGACC
L237M-F CTATAGAAATATGAACCTGAACTGGGAGC
I265M-F TACAGGCGATTTGGATATGGTTCACAC
L105I/V106I-F ATGATTGGGGAGCAATAATCGGATGGTACACA
T7-terminatorprimer GCTAGTTATTGCTCAGCGG
表2  突变引物序列
表3  PvEH1的催化活性及对映选择性
图1  分子对接模拟与多序列比对
Enzyme Activity (U/g wet cell) Relative activity(%) E value
PvEH1 157.2±3.6 100 5.6
PvEH1L105I 320.4±8.6 203.8 6.8
PvEH1V106I 234.8±5.9 149.4 7.0
PvEH1M129L 153.2±4.6 97.5 5.7
PvEH1P137T 10.4±0.5 6.6 2.5
PvEH1M175I 170.3±4.3 108.3 5.3
PvEH1L237M 122.8±3.4 78.1 6.3
PvEH1I265M 74.6±1.8 47.5 6.0
PvEH1L105I/V106I 493.8±9.8 314.1 8.3
表4  突变体的催化特性
图2  PvEH1和PvEH1L105I/V106ISDS-PAGE分析
Enzyme kcat (1/s) Km (mmol/L) kcat/Km [L/
(mmol·s)]
PvEH1 7.4 0.9 8.3
PvEH1L105I/V106I 10.7 0.6 17.7
表5  PvEH1和PvEH1L105I/V106I的动力学常数
1a(mmol/L) Time (h) c (%) ee (%) Yield(%)
50 3 90.2 > 99 9.8
80 3 86.1 > 99 13.8
100 3 80.0 > 99 19.9
120 3 74.8 80.4 22.7
表6  E.coli/pveh1L105I/V106I水解动力学拆分高浓度1a
图3  E.coli/pveh1L105I/V106I催化1a的水解进程曲线
[1] Woo J H, Kang K M, Kwon T H , et al. Isolation, identification and characterization of marine bacteria exhibiting complementary enantioselective epoxide hydrolase activity for preparing chiral chlorinated styrene oxide derivatives. J Ind Eng Chem, 2015,28:225-228.
doi: 10.1016/j.jiec.2015.02.018
[2] Wohlgemuth R, Archelas A, Kotik M . Epoxide hydrolases and their application in organic synthesis. Curr Org Chem, 2012,16(4):451-482.
doi: 10.2174/138527212799499840
[3] Mateo C, Solares L F . Improvement of the epoxide hydrolase properties for the enantioselective hydrolysis of epoxides. Curr Org Chem, 2013,17(7):744-755.
doi: 10.2174/1385272811317070008
[4] Bala N, Chimni S S . Recent developments in the asymmetric hydrolytic ring opening of epoxides catalysed by microbial epoxide hydrolase. Tetrahedron: Asymmetry, 2010,21(24):2879-2898.
doi: 10.1016/j.tetasy.2010.11.013
[5] Wu S, Li A, Chin Y S , et al. Enantioselective hydrolysis of racemic and meso-epoxides with recombinant Escherichia coli expressing epoxide hydrolase from Sphingomonas sp. HXN-200: preparation of epoxides and vicinal diols in high ee and high concentration. ACS Catal, 2013,3(4):752-759.
doi: 10.1021/cs300804v
[6] Bisi A, Rampa A, Budriesi R , et al. Cardiovascular hybrid drugs: new benzazepinone derivatives as bradycardic agents endowed with selective β1-non-competitive antagonism. Bioorg Med Chem, 2003,11(7):1353-1361.
doi: 10.1016/S0968-0896(02)00621-1
[7] Li C, Hu D, Zong X C , et al. Asymmetric hydrolysis of styrene oxide by PvEH2, a novel Phaseolus vulgaris, epoxide hydrolase with extremely high enantioselectivity and regioselectivity. Catal Commun, 2017,102:57-61.
doi: 10.1016/j.catcom.2017.08.026
[8] Kong X D, Yuan S, Li L , et al. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. PNAS, 2014,111(44):15717-15722.
doi: 10.1073/pnas.1404915111
[9] 叶慧华, 胡蝶, 李闯 , 等. 新型菜豆环氧化物水解酶的异源表达及对映归一性催化特性. 中国生物工程杂志, 2016,36(10):21-27.
doi: 10.13523/j.cb.20161004
Ye H H, Hu D, Li C , et al. Expression of a novel epoxide hydrolase from Phaseolus vulgaris and its enantioconvergent catalytic performance. China Biotechnology, 2016,36(10):21-27.
doi: 10.13523/j.cb.20161004
[10] 王瑞, 许耀辉, 王克伟 , 等. 环氧化物水解酶PvEH3的表达及手性邻二醇的合成. 化工进展, 2018,37(5):1933-1939.
Wang R, Xu Y H, Wang K W , et al. Expression of PvEH3,a Phaseolus vulgaris epoxide hydrolase,and synthesis of chiral vicinal diols. Chemical Industry Engineering Progress, 2018,37(5):1933-1939.
[11] Hu D, Tang C D, Li C , et al. Stereoselective hydrolysis of epoxides by reVrEH3, a novel Vigna radiata epoxide hydrolase with high enantioselectivity or high and complementary regioselectivity. J Agric Food Chem, 2017,65(45):9861-9870.
doi: 10.1021/acs.jafc.7b03804
[12] Mowbray S L, Elfström L T, Ahlgren K M , et al. X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes. Protein Sci, 2006,15(7):1628-1637.
doi: 10.1110/(ISSN)1469-896X
[13] 舒群峰, 徐美娟, 李静 , 等. 钝齿棒杆菌中异源表达N-乙酰鸟氨酸脱乙酰基酶合成L-鸟氨酸的研究. 中国生物工程杂志, 2018,38(7):29-39.
Shu Q F, Xu M J, Li J , et al. Producing L-ornithine by heterologous expression of N-acetyl-L-ornithinedeacetylase in Corynebacterium crenatum. China Biotechnology, 2018,38(7):29-39.
[14] 石小玲, 阚婷婷, 李闯 , 等. 菜豆环氧化物水解酶的表达及其催化特性研究. 微生物学通报, 2018,45(4):797-804.
Shi X L, Kan T T, Li C , et al. Expression and characterization of Phaseolus vulgaris epoxide hydrolase. Microbiology China, 2018,45(4):797-804.
[15] Wu K, Wang H, Sun H , et al. Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Appl Microbiol Biotechnol, 2015,99(22):9511-9521.
doi: 10.1007/s00253-015-6716-9
[16] Reetz M T, Bocola M, Wang L W , et al. Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage. J Am Chem Soc, 2009,131(21):7334-7343.
doi: 10.1021/ja809673d
[17] Reetz M T, Torre C, Eipper A , et al. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Org Lett, 2004,6(2):177-180.
doi: 10.1021/ol035898m
[18] Zou S P, Zheng Y G, Wu Q , et al. Enhanced catalytic efficiency and enantioselectivity of epoxide hydrolase from Agrobacterium radiobacter AD1 by iterative saturation mutagenesis for (R)-epichlorohydrin synthesis. Appl Microbiol Biotechnol, 2018,102(2):733-742.
doi: 10.1007/s00253-017-8634-5
[19] Li C, Zhao J, Hu D , et al. Multiple site-directed mutagenesis of a Phaseolus vulgaris epoxide hydrolase to improve its catalytic performance towards p-chlorostyrene oxide based on the computer-aided re-design. Int J Biol Macromol, 2019,121:326-332.
doi: 10.1016/j.ijbiomac.2018.10.030
[20] Choi W J, Huh E C, Park H J , et al. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol Tech, 1998,12(3):225-228.
doi: 10.1023/A:1008825508904
[21] Xu Y, Xu J H, Pan J , et al. Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii: cell/substrate ratio influences the optical purity of (R)-epoxides. Biotechnol Lett, 2004,26(15):1217-1221.
doi: 10.1023/B:BILE.0000036598.35494.de
[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[3] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[4] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[5] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[6] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[7] 孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.
[8] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[9] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[10] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[11] 向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕. 决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析[J]. 中国生物工程杂志, 2016, 36(10): 15-20.
[12] 叶慧华, 胡蝶, 李闯, 程建青, 邓超, 邬敏辰. 新型菜豆环氧化物水解酶的异源表达及对映归一性催化特性[J]. 中国生物工程杂志, 2016, 36(10): 21-27.
[13] 李瑶瑶, 毕静, 王艺红, 秦云贺, 张雪莲. 乙酰化修饰调控结核杆菌异柠檬酸裂合酶的研究[J]. 中国生物工程杂志, 2015, 35(6): 8-13.
[14] 高瑞平, 程隆斌, 李振秋. 一种简便快速的单引物PCR定点突变方法[J]. 中国生物工程杂志, 2015, 35(5): 61-65.
[15] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.