Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (10): 21-27    DOI: 10.13523/j.cb.20161004
研究报告     
新型菜豆环氧化物水解酶的异源表达及对映归一性催化特性
叶慧华1, 胡蝶2, 李闯2, 程建青3, 邓超3, 邬敏辰3
1 江南大学药学院 无锡 214122;
2 生物工程学院 无锡 214122;
3 无锡医学院 无锡 214122
Expression of a Novel Epoxide Hydrolase from Phaseolus vulgaris and Its Enantioconvergent Catalytic Performance
YE Hui-hua1, HU Die2, LI Chuang2, CHENG Jian-qing3, DENG Chao3, WU Min-chen3
1. School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China;
2. School of Biotechnology, Jiangnan University, Wuxi 214122, China;
3. Wuxi Medical School, Jiangnan University, Wuxi 214122, China
 全文: PDF(988 KB)   HTML
摘要:

为挖掘新型环氧化物水解酶(EH),探讨其对映归一性催化特性,以菜豆(Phaseolus vulgaris)总RNA为模板,采用RT-PCR扩增了一种菜豆EH(PvEH1)的编码基因pveh1,并将其在大肠杆菌BL21(DE3)中进行了表达。一级和三维结构分析表明,PvEH1与绿豆和苜蓿EHs的同源性分别为85.7和81.1%,其催化三联体为Asp101-His299-Asp264,属于α/β水解酶超家族。当PvEH1催化外消旋环氧苯乙烷水解的转化率达99.1%时,产物(R)-苯乙二醇的对映体纯度为33.6% e.e.pPvEH1对(S)-和(R)-SO的区域选择性系数αS和βR分别为91.1和53.3%。PvEH1的挖掘及其对映归一性催化特性的分析不仅增加了此类植物EHs的数目,而且为其归一性催化机制的研究和区域选择性的改造奠定了基础。

关键词: 菜豆对映归一性表达环氧化物水解酶    
Abstract:

To excavate a novel epoxide hydrolase from Phaseolus vulgaris (PvEH1) and explore its enantioconvergent catalytic performance, a PvEH1-encoding gene (pveh1) was amplified from the P. vulgaris total RNA by RT-PCR technique. Then, pveh1 was heterologously expressed in E. coli BL21(DE3) mediated by an expression plasmid pET28a(+). Analysis of primary and three-dimensional structures indicated that the identities of PvEH1 with Vigna radiata and Medicago truncatula epoxide hydrolases are 85.7 and 81.1%. Its catalytic triad is Asp101-His299-Asp264, belonging to the α/β-hydrolase superfamily. When the conversion rate of racemic styrene oxide catalyzed by PvEH1 reached 99.1%, the product, (R)-1-phenyl-1,2-ethanediol, was obtained with an enantiomeric purity of 33.6% e.e.p. PvEH1 possesses the opposite regioselectivity towards (S)-SO and (R)-SO with regioselectivity coefficients (αS and βR) of 91.1 and 53.3%. The discovery of PvEH1 and characterization of its enantioconvergence not only increased the number of plant EHs, but also established a foundation for the study of its catalytic mechanism and the directed modification of its regioselectivity.

Key words: Epoxide hydrolase    Expression    Phaseolus vulgaris    Enantioconvergence
收稿日期: 2016-04-05 出版日期: 2016-10-25
ZTFLH:  Q78  
基金资助:

江苏省研究生科研创新计划资助项目(KYLX15-1151;KYLX15-1190)

通讯作者: 邬敏辰,电子信箱:biowmc@126.com     E-mail: biowmc@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

叶慧华, 胡蝶, 李闯, 程建青, 邓超, 邬敏辰. 新型菜豆环氧化物水解酶的异源表达及对映归一性催化特性[J]. 中国生物工程杂志, 2016, 36(10): 21-27.

YE Hui-hua, HU Die, LI Chuang, CHENG Jian-qing, DENG Chao, WU Min-chen. Expression of a Novel Epoxide Hydrolase from Phaseolus vulgaris and Its Enantioconvergent Catalytic Performance. China Biotechnology, 2016, 36(10): 21-27.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161004        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I10/21

[1] 鞠鑫, 潘江, 许建和. 绿豆环氧水解酶催化对硝基苯乙烯氧化物的对映归一性水解. 催化学报, 2008, 29(8): 696-700. Ju X, Pan J, Xu J H. Enantioconvergent hydrolysis of p-nitrostyrene oxide catalyzed by mung bean epoxide hydrolase. Chinese J Catal, 2008, 29(8): 696-700.
[2] Choi W J. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl Microbiol Biotechnol, 2009, 84(2): 239-247.
[3] Kotik M, Archelas A, Wohlgemuth R. Epoxide hydrolases and their application in organic synthesis. Curr Org Chem, 2012, 16(4): 451-482.
[4] Lin S, Horsman G P, Shen B. Characterization of the epoxide hydrolase NcsF2 from the neocarzinostatin biosynthetic gene cluster. Org Lett, 2010, 12(17): 3816-3819.
[5] Orru R V, Mayer S F, Kroutil W, et al. Chemoenzymatic deracemization of (±)-2,2-disubstituted oxiranes. Tetrahedron, 1998, 54(5): 859-874.
[6] Kotik M, Archelas A, Famerova V, et al. Laboratory evolution of an epoxide hydrolase-Towards an enantioconvergent biocatalyst. J Biotechnol, 2011, 156(1): 1-10.
[7] Zhu Q Q, He W H, Kong X D, et al. Heterologous overexpression of Vigna radiata epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol. Appl Microbiol Biotechnol, 2014, 98(1): 207-218.
[8] Wu Y W, Kong X D, Zhu Q Q, et al. Chemoenzymatic enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol by a newly cloned epoxide hydrolase VrEH2 from Vigna radiata. Catal Commun, 2015, 58: 16-20.
[9] Arand M, Wagner H, Oesch F. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase. J Biol Chem, 1996, 271(8): 4223-4229.
[10] Mowbray S L, Elfstrom L T, Ahlgren K M, et al. X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes. Protein Sci, 2006, 15(7): 1628-1637.
[11] Barth S, Fischer M, Schmid R D, et al. Sequence and structure of epoxide hydrolases: a systematic analysis. Proteins, 2004, 55(4): 846-855.
[12] 吴燕雯. 绿豆环氧水解酶VrEH2催化性质研究及分子改造的初步探索. 上海: 华东理工大学, 2015. Wu Y W. Studies on the catalytic properties of epoxide hydrolase 2 from Vigna radiata (VrEH2) and its preliminary molecular modification. Shanghai: East China University of Science and Technology, 2015.
[13] Monterde M I, Lombard M, Archelas A, et al. Enzymatic transformations. Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase. Tetrahedron, 2004, 15(18): 2801-2805.
[14] Xu W, Xu J H, Pan J, et al. Enantioconvergent hydrolysis of styrene epoxides by newly discovered epoxide hydrolases in mung bean. Org Lett, 2006, 8(8): 1737-1740.
[15] Kotik M, Zhao W, Iacazio G, et al. Directed evolution of metagenome-derived epoxide hydrolase for improved enantioselectivity and enantioconvergence. J Mol Catal B Enzym, 2013, 91: 44-51.

[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[3] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[4] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[5] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[6] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[7] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[8] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[9] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[10] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[11] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[12] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[13] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[14] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[15] 程旭,杨雨睛,吴赛男,侯勤龙,李咏梅,韩慧明. 金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 41-50.