Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (7): 83-88    DOI: 10.13523/j.cb.20180711
技术与方法     
D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *
孙帆1,2,3,宿玲恰1,2,3,张康1,2,3,吴敬1,2,3,**()
1 江南大学食品科学与技术国家重点实验室 无锡 214122
2 江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
3 江南大学教育部食品安全国际合作联合实验室 无锡 214122
D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells
Fan SUN1,2,3,Ling-qia SU1,2,3,Kang ZHANG1,2,3,Jing WU1,2,3,**()
1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
2 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
3 International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
 全文: PDF(677 KB)   HTML
摘要:

将来源于Clostridium cellulolyticum H10的DPEase基因在食品级表达系统Bacillus subtilis中进行产酶研究,在3L发酵罐中高密度发酵最终酶活可达495U/ml,得到高表达量的DPEase酶液。通过硅藻土-海藻酸钠(吸附包埋法)对重组细胞进行固定化研究,结果表明,当海藻酸钠浓度为2%、细胞包埋量为50g/L、CaCl2浓度为2%、硅藻土浓度为1%时,固定化细胞酶活回收率可达64%,固定化细胞与游离细胞相比最适pH不变,最适温度提高5℃,热稳定性明显提高,连续反应7个批次后转化率仍然为28%,仍保持81%的残余酶活,具有很高的工业应用价值。

关键词: D-阿洛酮糖3-差向异构酶枯草芽孢杆菌高密度发酵固定化细胞    
Abstract:

The DPEase gene from Clostridium cellulolyticum H10 was studied on the enzyme production in the food grade expression system Bacillus subtilis. The final enzyme activity was 495U/ml by high-cell-density fermentation in the 3L fermentor. The recombinant cells were immobilized by diatomite-sodium alginate (adsorption-occlusion method); the optimized immobilized conditions were as follows: 2% sodium alginate, 50g/L cell concentration, 2% CaCl2 and 1% diatomite. Under the optimum condition, the recovery rate reached 64%. Compared with the free cells, the immobilized cells had the same optimal pH, the optimal temperature was increased by 5℃;and the thermal stability was significantly improved. The conversion rate was still 28% after 7 times repeated operations; it was also maintained 81% of the residual enzyme activity, which had a high industrial application value.

Key words: D-psicose    3-epimerase    Bacillus subtilis    High-cell-density fermentation    Immobilized cells
收稿日期: 2018-01-23 出版日期: 2018-08-13
ZTFLH:  Q814  
基金资助: 国家自然科学基金(31501419);国家杰出青年基金(31425020)
通讯作者: 吴敬     E-mail: jingwu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙帆
宿玲恰
张康
吴敬

引用本文:

孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.

Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells. China Biotechnology, 2018, 38(7): 83-88.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180711        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I7/83

图1  重组菌在3L罐中的生长和产酶过程
图2  DPEase SDS-PAGE分析
图3  海藻酸钠浓度对固定化细胞酶活回收率的影响
图4  细胞包埋量对固定化细胞酶活回收率的影响
图5  CaCl2浓度对固定化细胞酶活回收率的影响
图6  硅藻土浓度对固定化细胞酶活回收率的影响
图7  固定化细胞与游离细胞的最适pH(a)和最适温度(b)
图8  固定化细胞的操作稳定性
[1] Matsuo T, Suzuki H, Hashiguchi M , et al. D-psicose is a rare sugar that provides no energy to growing rats.[J] Nutr Sci Vitaminol. 2002,48(1):77-80.
doi: 10.1016/j.lithos.2005.03.019 pmid: 12026195
[2] Iida T, Hayashi N, Yamada T , et al. Failure of D-psicose absorbed in the small intestine to metabolize into energy and its low large intestinal fermentability in humans. Metabolism: Clinical and Experimental, 2010,59(2):206-214.
doi: 10.1016/j.metabol.2009.07.018
[3] Nagata Y, Kanasaki A, Tamaru S , et al. D-psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats. J Agric Food Chem, 2015,63(12):3168-3176.
doi: 10.1021/jf502535p
[4] Zunino S . Type 2 diabetes and glycemic response to grapes or grape products. The Journal of Nutrition, 2009,139(9):1794S-1800S.
doi: 10.3945/jn.109.107631 pmid: 19625702
[5] Kim H J, Hyun E K, Kim Y S , et al. Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Applied and Environmental Microbiology, 2006,72(2):981-985.
doi: 10.1128/AEM.72.2.981-985.2006
[6] Mu W, Chu F, Xing Q , et al. Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10. J Agric Food Chem, 2011,59(14):7785-7792.
doi: 10.1021/jf201356q
[7] Zhu Y, Men Y, Bai W , et al. Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production. Biotechnology Letters, 2012,34(10):1901-1906.
doi: 10.1007/s10529-012-0986-4
[8] Boer A S, Diderichsen B . On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Applied Microbiology and Biotechnology, 1991,36(1):1-4.
doi: 10.1007/BF00164689 pmid: 1367772
[9] 李静静, 徐美娟, 张显 , 等. 一种耐低温乙酰乳酸脱羧酶在枯草芽孢杆菌中的高效表达. 食品与生物技术学报, 2013,32(5):516-523.
doi: 10.3969/j.issn.1673-1689.2013.05.011
Li J J, Xu M J, Zhang X , et al. High-level expression of cold- adapted acetolactate decarboxylase in Bacillus subtilis. Journal of Food Science and Biotechnology, 2013,32(5):516-523.
doi: 10.3969/j.issn.1673-1689.2013.05.011
[10] Chen J, Zhu Y, Fu G , et al. High-level intra- and extra-cellular production of D-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis. Journal of Industrial Microbiology & Biotechnology. 2016,43(11):1577-1591.
[11] Huang H, Ridgway D, Gu T , et al. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess and Biosystems Engineering, 2004,27(1):63-69.
doi: 10.1007/s00449-004-0391-z pmid: 15645311
[12] Shene C, Mir N, Andrews B A , et al. Effect of the growth conditions on the synthesis of a recombinant β-1,4-endoglucanase in continuous and fed-batch culture. Enzyme and Microbial Technology, 2000,27(3-5):248-253.
doi: 10.1016/S0141-0229(00)00203-9
[13] Zhu Y, Liu Y, Li J , et al. An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen level improves N-acetylglucosamine production in recombinant Bacillus subtilis. Bioresource Technology, 2015,177(11):387-392.
doi: 10.1016/j.biortech.2014.11.055
[14] Bruckner R, Titgemeyer F . Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters, 2002,209(2):141-148.
doi: 10.1111/fml.2002.209.issue-2
[15] 王雪梅, 于明锐, 谭天伟 . 海藻酸钠复合载体固定化细胞拆分D,L-泛解酸内酯. 北京化工大学学报, 2006,33(3):28-32.
Wang X M, Yu M R, Tan T W . Immobilization of fusarium oxysporum BU-11 cells by alginate composite for optical resolution of racemic DL-pantolactone. Journal of Beijing University of Chemical Technology, 2006,33(3):28-32.
[16] 付凤根, 徐铮, 李贵祥 , 等. 利用固定化重组大肠杆菌细胞生产D-塔格糖. 中国生物工程杂志, 2011,31(7):85-90.
Fu F G, Xu Z, Li G X , et al. D-tagatose production utilizing immobilized recombinant Escherichia coli cells. China Biotechnology, 2011,31(7):85-90.
[17] 李秋喜, 林春芳, 沐万孟 , 等. 海藻酸钠固定细胞产D-阿洛酮糖的研究. 食品工业科技, 2015,10(7):172-176.
Li Q X, Lin C F, Mu W M , et al. Research of the immobilization of microbial cells in sodium alginate for D-psicose conversion. Science and Technology of Food Industry, 2015,10(7):172-176.
[1] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[2] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[3] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.
[4] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[5] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[6] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[7] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[8] 康国凯, 冯国栋, 曹坤琳, 陈正军, 葛向阳. 重组毕赤酵母(Pichia pastoris)高产Lunasin的发酵工艺优化[J]. 中国生物工程杂志, 2016, 36(8): 73-79.
[9] 胡桂元, 杨套伟, 饶志明, 刘梅, 徐美娟, 张显. 增强胞内NDAH水平和乙偶姻还原酶活力提高2,3-丁二醇产量[J]. 中国生物工程杂志, 2016, 36(6): 57-64.
[10] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.
[11] 郝文博, 姬芳玲, 王静云, 张悦, 王天琪, 车文实, 包永明. D194G突变对meso-2,3-丁二醇脱氢酶催化特性的影响[J]. 中国生物工程杂志, 2016, 36(1): 47-54.
[12] 武婕, 张晓雪, 余河水, 李薇, 贾宇平, 郭江玉, 张丽娟, 宋新波. 毕赤酵母工程菌高密度发酵研究与进展[J]. 中国生物工程杂志, 2016, 36(1): 108-114.
[13] 夏烨, 黄惟巍, 杨旭, 孙鹏艳, 姚月婷, 王世杰, 刘存宝, 孙文佳, 白红妹, 姚宇峰, 马雁冰. 利用不同碳源进行毕赤酵母高密度发酵及TEF-1启动子指导下的HPV16_L1蛋白表达[J]. 中国生物工程杂志, 2015, 35(10): 39-43.
[14] 柳慧丽, 李园园, 鞠瑞成, 赵宏涛, 杨清. 拮抗枯草芽孢杆菌KC-5的分离鉴定及其发酵优化[J]. 中国生物工程杂志, 2014, 34(3): 96-102.
[15] 刘强, 徐晴, 李霜. 膜反应器固定化米根霉发酵产富马酸的工艺研究[J]. 中国生物工程杂志, 2014, 34(2): 93-97.