Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (1): 63-70    DOI: 10.13523/j.cb.20190108
技术与方法     
重组Humicola insolens角质酶的高密度发酵优化 *
黄燕1,2,3,孙益荣1,2,3,吴敬1,2,3,宿玲恰1,2,3,**()
1 江南大学食品科学与技术国家重点实验室 无锡 214122
2 江南大学生物工程学院工业生物技术教育部重点实验室 无锡 214122
3 江南大学 教育部食品安全国际合作联合实验室 无锡 214122
Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase
Yan HUANG1,2,3,Yi-rong SUN1,2,3,Jing WU1,2,3,Ling-qia SU1,2,3,**()
1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122,China
2 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122,China
3 Joint Laboratory for International Cooperation in Food Safety by the Ministry of Education, Jiangnan University, Wuxi 21412,China
 全文: PDF(760 KB)   HTML
摘要:

在采用前期已构建的重组菌E.coli BL21(DE3)/pET20b(+)-hic进行高密度发酵制备角质酶时发现,在高诱导强度发酵时,菌体浓度下降明显。同时,通过测定纯化重组角质酶的磷脂水解活性,考察验证了重组酶对宿主细胞的损伤作用。重组酶的磷脂酰乙醇胺活性为9.8U/mg(NPB水解比活力为1 047.6 U/mg),在卵黄平板出现了明显的反应圈现象。在此基础上尝试了高菌体浓度结合高诱导强度的发酵策略,以进一步提高重组酶在3L罐中的表达水平。优化后的最佳条件及结果为:OD600为75时,恒速流加0.8g/(L ·h)的乳糖溶液,发酵24h后,酶活达到最大值4 788.0U/ml,约为摇瓶发酵酶活的28倍,与OD600为50时、流加0.2 g/(L ·h)进行诱导的发酵策略(酶活2 233.0 U/ml)相比,提高幅度约为114.0%,发酵时间缩短40.0%。

关键词: Humicola insolens角质酶磷脂酶活性高密度发酵    
Abstract:

During the high-density fermentation of cutinase using E.coli BL21(DE3)/pET20b(+)-hic, it was found that the concentration of bacteria decreased obviously under high induction intensity fermentation. The phospholipid activity of the purified recombinant cutinase was determined in order to verify the effect of recombinant enzyme on E.coli. The phosphatidyl ethanolamine activity of the recombinant enzyme was 9.8U/mg (the specific activity of NPB hydrolysis was 1 047.6U/mg). Then, the strategy of high cell concentration and high induction intensity was used to further improve the expression level of recombinant enzyme in 3L fermentor. The optimizing fermentation conditions was: the induce phases started when the cell concentration OD600 reached 75 and the temperature was adjusted to 30℃, lactose solution were added with constant flow rate of 0.8g/(L ·h) for 24h. The highest activity of enzyme reached 4 788.0U/ml, which is 28 times higher than the enzyme activity in shake flask. Comparing with other fermentation strategy which induced at OD600 of 50 with 0.2g/(L ·h) lactose solution with enzyme activity 2 233.0U/ml, the enzyme activity increased about 114.0% and the fermentation time was shortened by 40.0%.

Key words: Humicola insolens    Cutinase    Phospholipase activity    High density fermentation
收稿日期: 2018-09-18 出版日期: 2019-02-28
ZTFLH:  Q814  
基金资助: * 国家杰出青年基金(31425020);高等学校学科创新引智计划资助项目(B170210)
通讯作者: 宿玲恰     E-mail: sulingqia@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄燕
孙益荣
吴敬
宿玲恰

引用本文:

黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.

Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase. China Biotechnology, 2019, 39(1): 63-70.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190108        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I1/63

图1  在OD600为50条件下诱导强度对重组菌生长 (a) 和产酶 (b) 的影响
图2  在OD600 50,乳糖流速0.2g/(L ·h)诱导条件下发酵上清液SDS-PAGE分析
图3  纯化的重组角质酶SDS-PAGE分析
纯化步骤 总蛋白质含量 (mg) 总酶活 (U) 比活力(U/mg) 得率 (%) 纯化倍数 (倍)
粗酶液 5.65 4.42×103 7.83×102 100 1.00
硫酸铵沉淀 2.46 2.20×103 8.94×102 49.7 1.14
MonoQ阴离子交换柱 0.89 9.41×102 1.05×103 21.2 1.33
表1  重组角质酶的纯化工艺
图4  重组角质酶的磷脂水解活性检测
图5  在OD600为75条件下诱导强度对重组菌生长 (a) 和产酶 (b) 的影响
图6  在OD600 75、乳糖流速0.8g/(L ·h)诱导条件下发酵上清液SDS-PAGE分析; 箭头所指处为重组表达的角质酶
图7  在OD600为95条件下诱导强度对重组菌生长 (a) 和产酶 (b) 的影响
[1] Chen S, Tong X, Woodard R W , et al. Identification and characterization of bacterial cutinase. Journal of Biological Chemistry, 2008,283(38):25 854-25 862.
doi: 10.1074/jbc.M800848200 pmid: 3258855
[2] 李江华, 刘龙, 陈晟 , 等. 角质酶的研究进展, 生物工程学报, 2009,25(12):1829-1837.
doi: 10.3321/j.issn:1000-3061.2009.12.010
Li J H, C Sheng, Du G C ,et al, Advances in cutinase research. Chinese Journal of Biotechnology, 2009,25(12):1829-1837.
doi: 10.3321/j.issn:1000-3061.2009.12.010
[3] Andersen B K, Borch K, Damgaard B , et al. Method of treating polyester fabrics. US, WO1999/001604.1999-01-14[2018-07-17].
[4] Kolattukudy P E, Maiti I B, Purdy R E . Cutinases from fungi and pollen. Methods in Enzymology, 1981,71(81):652-664.
doi: 10.1016/0076-6879(81)71078-4
[5] Pio T F, Macedo G A . Cutinase production by Fusarium oxysporum in liquid medium using central composite design. Journal of Industrial Microbiology and Biotechnology, 2008,35(1):59-67.
doi: 10.1007/s10295-007-0266-9 pmid: 17938980
[6] Li D, Ashby A M, Johnstone K . Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape. Molecular Plant-microbe Interactions, 2003,16(6):545-552.
doi: 10.1094/MPMI.2003.16.6.545 pmid: 12795380
[7] Chen S, Tong X, Chen J , et al. Identification and characterization of bacterial cutinase. Journal of Biological Chemistry, 2008,283(38):25854-25862.
doi: 10.1074/jbc.M800848200 pmid: 3258855
[8] Fett W F, Gérard H C, Jones L E , et al. Cutinase production by Streptomyces spp. Current Microbiology, 1992,25(3):165-171.
doi: 10.1007/BF01571025
[9] Sebastian J, Chandra A K, Kolattukudy P E . Discovery of a cutinase-producing Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp. in the phyllosphere. Journal of Bacteriology, 1987,169(1):131-136.
doi: 10.1128/jb.169.1.131-136.1987 pmid: 3793714
[10] Calado C R C, Almeida C, Cabral J M S , et al. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. Journal of Bioscience and Bioengineering, 2003,96(2):141-148.
doi: 10.1016/S1389-1723(03)90116-2 pmid: 16233499
[11] Fraga L P, Carvalho P O, Macedo G A , Production of cutinase by Fusarium oxysporum on Brazilian agricultural by-products and its enantioselective properties. Food Bioprocess Technol, 2012,5:138-146.
doi: 10.1007/s11947-009-0261-4
[12] 何刚强, 堵国成, 刘立明 , 等. 嗜热子囊菌利用短链有机酸生产角质酶, 生物工程学报, 2008,24(5):821-828.
doi: 10.3321/j.issn:1000-3061.2008.05.017
He G Q, Du G C, Liu L M, He Liu , et al. Cutinase production from short-chain organic acids by Thermobifida fusca. Chinese Journal of Biotechnology, 2008,24(5):821-828.
doi: 10.3321/j.issn:1000-3061.2008.05.017
[13] Su L, Woodard R W, Wu J , et al. Extracellular location of thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Applied and Environmental Microbiology, 2013,79(14):4192-4198.
doi: 10.1128/AEM.00239-13 pmid: 3697513
[14] 张芙华, 陈晟, 吴敬 , 等. pH两阶段控制策略发酵生产重组角质酶. 中国生物工程杂志, 2008,28(5):59-64.
doi: 10.3969/j.issn.1671-8135.2008.05.010
Zhang F H, Chen S, Zhang D X, Wu J , et al. Studies on two-stage pH control strategy of recombinant cutinase production. China Biotechnology, 2008,28(5):59-64.
doi: 10.3969/j.issn.1671-8135.2008.05.010
[15] 张芙华, 华兆哲, 吴敬 , 等. 温度两阶段控制策略发酵生产重组角质酶. 应用与环境生物学报, 2009,15(5):730-733.
doi: 10.3724/SP.J.1145.2009.00730
Zhang F H, Hua Z H, Wu J , et al. Effect of Two-staged temperature strategy on production of cutinase with recombinant Bacillus subtilis. Chinese Journal of Applied Environmental Biology, 2009,15(5):730-733.
doi: 10.3724/SP.J.1145.2009.00730
[16] 吴世雄 . 嗜酸热硫化叶菌 MTSase 和 MTHase 的异源表达及应用. 无锡: 江南大学, 2016.
Wu S X . Heterologous expression of Sulfolobus acidocaldarius MTSase and MTHase and its application. Wuxi: Jiangnan University, 2016.
[17] 张悦 . 嗜热栖热菌海藻糖合酶的表达、分子改造及其应用研究. 无锡: 江南大学, 2015.
doi: 10.13995/j.cnki.11-1802/ts.201512001
Zhang Y . The study of expression, molecular modification and application of trehalose synthase from Thermus thermophihus. Wuxi: Jiangnan University, 2015.
doi: 10.13995/j.cnki.11-1802/ts.201512001
[18] Su L, Xu C, Wu J , et al. A novel strategy for enhancing extracellular secretion of recombinant proteins in Escherichia coli. Appl Microbiol Biotechnol, 2013,97(15):6705-6713.
doi: 10.1007/s00253-013-4994-7 pmid: 23722267
[1] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[2] 康国凯, 冯国栋, 曹坤琳, 陈正军, 葛向阳. 重组毕赤酵母(Pichia pastoris)高产Lunasin的发酵工艺优化[J]. 中国生物工程杂志, 2016, 36(8): 73-79.
[3] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.
[4] 武婕, 张晓雪, 余河水, 李薇, 贾宇平, 郭江玉, 张丽娟, 宋新波. 毕赤酵母工程菌高密度发酵研究与进展[J]. 中国生物工程杂志, 2016, 36(1): 108-114.
[5] 夏烨, 黄惟巍, 杨旭, 孙鹏艳, 姚月婷, 王世杰, 刘存宝, 孙文佳, 白红妹, 姚宇峰, 马雁冰. 利用不同碳源进行毕赤酵母高密度发酵及TEF-1启动子指导下的HPV16_L1蛋白表达[J]. 中国生物工程杂志, 2015, 35(10): 39-43.
[6] 罗漫杰, 谢渊, 钱志刚, 冯雁, 杨广宇. 超嗜热酯酶EST2在不同宿主中的异源高效表达研究[J]. 中国生物工程杂志, 2014, 34(12): 36-44.
[7] 智晓燕, 汪小锋, 孙永川, 柯锋, 代敏, 闫云君. 多拷贝毕赤酵母重组菌表达GCL摇瓶优化和高密度发酵[J]. 中国生物工程杂志, 2012, 32(02): 82-89.
[8] 郭森, 吴丹, 陈晟, 吴敬, 陈坚. 重组大肠杆菌产角质酶-CBM摇瓶发酵优化及分泌表达研究[J]. 中国生物工程杂志, 2011, 31(9): 55-61.
[9] 汪小锋, 申旭光, 赵鹤云, 孙永川, 纪昌涛, 闫云君. 带His-tag的解脂耶氏酵母脂肪酶Lip2在毕赤酵母中的表达及纯化[J]. 中国生物工程杂志, 2011, 31(04): 53-59.
[10] 黄静, 史建明, 霍文婷, 徐庆阳, 谢希贤, 温廷益, 陈宁. NH4+对L-色氨酸发酵的影响[J]. 中国生物工程杂志, 2011, 31(03): 55-60.
[11] 张瑶 陈晟 吴丹 吴敬 陈坚. 角质酶及其在纺织工业中的应用[J]. 中国生物工程杂志, 2010, 30(09): 105-109.
[12] 陈晟 张芙华 陈坚 吴敬. 流加发酵对重组Bacillus subtilis发酵生产角质酶的影响[J]. 中国生物工程杂志, 2010, 30(01): 62-66.
[13] 邓永康1,吴民泸2,刘盛邦1,杜林方1,伍黎黎1,李曼1,孟延发1. 乳糖诱导重组尿酸酶基因在大肠杆菌中的表达[J]. 中国生物工程杂志, 2009, 29(07): 74-79.
[14] 张广敏1,2,王炜1,3,包慧芳1,3,张晓琳1,2,詹发强,1,3,林瑞峰1,3. 植物乳杆菌Lp-2的高密度发酵[J]. 中国生物工程杂志, 2009, 29(06): 68-73.
[15] 林俊涵. 毕赤酵母高密度发酵工艺的研究[J]. 中国生物工程杂志, 2009, 29(05): 120-125.