Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (7): 89-93    DOI: 10.13523/j.cb.20180712
综述     
sRNA调控细菌耐药相关基因表达研究进展 *
叶中杨1,邱怀雨3,祝丙华1,李泽1,祝业2,**(),王立贵1,**()
1 中国人民解放军疾病预防控制所 北京 100071
2 军事科学院图书馆 北京 100850
3 首都医科大学附属北京朝阳医院 北京 100020
Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance
Zhong-yang YE1,Huai-yu QIU3,Bing-hua ZHU1,Ze LI1,Ye ZHU2,**(),Li-gui WANG1,**()
1 Institute of Disease Control and Prevention of Chinese People’s Liberation Army, Beijing 100071,China;
2 Library ofAcademy of Military Sciences, Beijing 100850, China
3 Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020,China
 全文: PDF(373 KB)   HTML
摘要:

近年来随着抗菌药物的广泛应用,造成各种耐药菌、多重耐药菌甚至是超级细菌的出现,对抗菌治疗产生严重的威胁。sRNA是一类新发现的基因表达调控因子,通过与靶mRNA或靶蛋白配对,从而调控细胞的生理功能以应对各种环境变化。研究表明,sRNA能够在细菌耐药过程中(如阻碍抗生素进入细胞、将药物外排出菌胞)发挥重要的调控作用。就sRNA参与调控细菌耐药机制相关基因的表达研究展开系统综述,从而为阐明耐药机制及发现新的药物靶点提供有益参考。

关键词: sRNA细菌耐药耐药机制    
Abstract:

In recent years, the emergence of drug-resistant bacteria poses a serious threat to the antibiotic therapy. sRNAs are new regulatory factors of gene expression, which regulate the physiological function of cell in response to various environmental changes by pairing target mRNA or protein. Studies have shown that sRNA can play an important role in the process of bacterial resistance, such as blocking the pathways of antibiotics into cells and releasing the drugs in the cells. The sRNAs regulates the expression of genes in related with bacterial resistance, which is helpful for elucidation of resistance mechanisms and discovery of new drug targets were reviewed.

Key words: sRNA    Bacterial resistance    Resistance mechanism
收稿日期: 2018-02-27 出版日期: 2018-08-13
ZTFLH:  Q819  
基金资助: 军医学科技青年培育计划(16QNP127);北京市科技新星计划(Z171100001117102)
通讯作者: 祝业,王立贵     E-mail: zhuye10079@sina.com;wangligui1983@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
叶中杨
邱怀雨
祝丙华
李泽
祝业
王立贵

引用本文:

叶中杨,邱怀雨,祝丙华,李泽,祝业,王立贵. sRNA调控细菌耐药相关基因表达研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 89-93.

Zhong-yang YE,Huai-yu QIU,Bing-hua ZHU,Ze LI,Ye ZHU,Li-gui WANG. Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance. China Biotechnology, 2018, 38(7): 89-93.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180712        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I7/89

菌种 sRNA 靶点基因 靶点基因功能 sRNA作用机制 参考文献
大肠杆菌 SdsR tolC 编码外排泵AcrAB-TolC外膜成分蛋白 通过碱基配对直接封闭核糖体结合位点的上游 [9]
大肠杆菌 DsrA mdtE 编码多药外排泵MdtEF 激活编码多药外排泵MdtEF的基因mdtE [11]
淋病奈瑟菌 NrrF mtrF 编码外排泵MtrC-MtrD-MtrE内膜蛋白MtrF 调控mtrF转录水平 [12]
大肠杆菌 MgrR eptB 编码脂多糖修饰酶EptB 下调eptB表达 [14]
沙门氏菌 SroC MgrR 下调eptB表达 直接下调MgrR的水平 [15]
大肠杆菌 GcvB cycA 编码一种与甘氨酸、D-环丝氨酸等转运相关的透性酶 与Hfq蛋白协作下调cycA表达 [16]
大肠杆菌 MicF ompF 编码膜孔蛋白 ompF mRNA的翻译起始区形成RNA双链以下调这种外膜孔蛋白的表达 [18]
肠原杆菌 MicL lpp 编码外膜脂蛋白LPP 抑制lpp mRNA的翻译 [19]
大肠杆菌 RyhB cirA 编码的CirA同时作为含铁细胞转运体和大肠菌素Ia的受体 以碱基配对方式改变cirA mRNA结构从而对抗hfq的抑制作用,恢复其稳定期同等效率的翻译水平 [20]
金黄色葡萄球菌 SprX spoVG 编码SpoVG蛋白 直接反义配对第二操作子基因内的翻译起始序列,下调SpoVG蛋白的表达 [21]
大肠杆菌 GlmY、GlmZ glmS 编码葡萄糖-6-磷酸盐合成酶 共同调节GlmS的合成以达到葡萄糖-6-磷酸盐稳态 [22]
大肠杆菌 McaS、RprA、
OmrA/B、GcvB
csgD 编码生物膜调控子CsgD csgD mRNA的5'UTR以碱基配对方式结合发挥调控作用 [24]
表1  sRNA及其靶标基因汇总
[1] Ding Y T . The research progress on mechanism of bacterial resistance at home and aboad. Modern Preventive Medicine, 2013,40(6):1109-1111.
[2] Zhao M Q, Shen H Y, Pan W , et al. The causes, mechanism and preventive measures of bacterial resistance. China Animal Husbandry & Veterinary Medicine, 2011,38(5):177-181.
[3] Hou F, Lü Y . Bacterial resistance can’t be ignored. Chinese Journal of Antibiotics, 2017,42(3):203-206.
[4] Nie J J, Jin X, Meng X C , et al. Classifications and funtions of small non-coding RNA in bacteria. Chinese Journal of Animal Infectious Diseases, 2013,21(3):75-79.
[5] Song T, Sabharwal D, Gurung J M , et al. Vibrio cholerae utilizesdirect sRNA regulation in expression of a biofilm matrix protein. PLoS One, 2014,9(7):e101280.
doi: 10.1371/journal.pone.0101280 pmid: 4108314
[6] Thomason M K, Fontaine F, De L N , et al. A small RNA thatregulates motility and biofilm formation in response to changes innutrient availability in Escherichia coli. Mol Microbiol, 2012,84(1):17-35.
doi: 10.1111/mmi.2012.84.issue-1
[7] Udekwu K I . Transcriptional and post-transcriptional regulation of the Escherichia coli luxS Mrna; involvement of the sRNA MicA. PLoS One, 2010,5(10):e13449.
doi: 10.1371/journal.pone.0013449
[8] Du D, Veen H W V,Luisi B F .Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends in Microbiol, 2015,23(5):311-319.
doi: 10.1016/j.tim.2015.01.010 pmid: 25728476
[9] Parker A, Gottesman S . Small RNA regulation of TolC, the outer membrane component of bacterial multidrug transporters. Journal of Bacteriology, 2016,198(7):1101-1113.
doi: 10.1128/JB.00971-15 pmid: 26811318
[10] Omar T Q, Vicenta M, Rafael N M , et al. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti. PLoS One, 2013,8(7):e68147.
doi: 10.1371/journal.pone.0068147
[11] Nishino K, Yamasaki S, Hayashi-Nishino M , et al. Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2011,66(2):291-296.
doi: 10.1093/jac/dkq420 pmid: 21088020
[12] Lydgia A J, Pan J C, Michael W D , et al. Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. Journal of Bacteriology, 2013,195(22):5166-5173.
doi: 10.1128/JB.00839-13 pmid: 3811587
[13] Anne H D . Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta, 2009,1794(5):808-816.
doi: 10.1016/j.bbapap.2008.11.005 pmid: 19100346
[14] Kyung M, Susan G . A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol Microbiol, 2009,74(6):1314-1330.
doi: 10.1111/j.1365-2958.2009.06944.x pmid: 19889087
[15] Acuna L G, Barros M J, Martinez D , et al. A feed-forward loop between SroC and MgrR small RNAs modulates the expression of eptB and the susceptibility to polymyxin B in Salmonella typhimurium. Microbiology, 2016,162(11):1996-2004.
doi: 10.1099/mic.0.000365
[16] Pulvermacher S C, Stauffer L T, Stauffer G V . Role of the sRNA GcvB in regulation of cycA in Escherichia coli. Microbiology, 2009,155(1):106-114
doi: 10.1099/mic.0.023598-0 pmid: 19118351
[17] Zhu Z, Cao M Z, Zhang J L , et al. Research progress on bacterial resistance. China Animal Husbandry&Veterinary Medicine, 2015,42(12):3371-3376.
[18] Jörg V, Kai P . Small non-coding RNAs and the bacterial outer membrane. Microbiology, 2006,9(6):605-611
doi: 10.1016/j.mib.2006.10.006 pmid: 17055775
[19] Monica S G, Taylor B U, Emily B G , et al. MicL, a new sE-dependent sRNA, combatsenvelope stress by repressing synthesisof Lpp, the major outer membranelipoprotein. Genes Dev. 2014,28(14):1620-1634.
doi: 10.1101/gad.243485.114
[20] Hubert S, Marie P C, Justine B L , et al. Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. The EMBO Journal, 2013,32(20):2764-2778.
doi: 10.1038/emboj.2013.205
[21] Alex E, Pierre T, Svetlana C , et al. A small RNA controls a protein regulator involved in antibiotic resistance in Staphylococcus aureus. Nucleic Acids Research, 2014,42(8):4892-4905.
doi: 10.1093/nar/gku149
[22] Khan M A, Göpel Y, Milewski S , et al. Two small RNAs conserved in Enterobacteriaceae provide intrinsic resistance to antibiotics targeting the cell wall biosynthesis enzyme glucosamine-6-phosphate synthase. Front Microbiol, 2016,7(e1025):908.
[23] Gao X F, Liu Z Z, Li W L , et al. Advance in research on regulation of sRNAs in bacterial biofilm formation. Mil Med Sci, 2017,41(6):530-533.
[24] Jacob R C, Karin S . Small RNAs and their role in biofilm formation. Trends Microbiol, 2013,21(1):39-49.
doi: 10.1016/j.tim.2012.10.008 pmid: 3752386
[25] Miller C L, Manuel R , Rajasekhar K S L,et al.RsmW,Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions. BMC Microbiology, 2016,16(1):155.
doi: 10.1186/s12866-016-0771-y
[26] Li Y L, Lu Y M, Han Z M , et al. Bacterial biofilm: composition, regulation and association with plant. Microbiology China, 2017,44(6):1491-1499.
[27] Maureen K T, Fanette F, Nicholas D L , et al. A small RNA that regulates motility and biofilm formation inresponse to changes in nutrient availability in Escherichia coli. Mol Microbiol. 2012,84(1):17-35.
doi: 10.1111/mmi.2012.84.issue-1
[28] Liu Z Z, Gao X F, Wang H D , et al. Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. BMC Microbiology, 2016,16(1):176.
doi: 10.1186/s12866-016-0793-5 pmid: 4973556
[29] Diego O S, Franziska M, Anja M R , et al. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σE-dependent sRNA RybB. Molecular Microbiology, 2016,101(1):136-151.
doi: 10.1111/mmi.13379
[30] Yu J, Schneiders T . Tigecycline challenge triggers sRNA production in Salmonella enterica serovar Typhimurium. BMC Microbiol, 2012,12(1):1-13.
doi: 10.1186/1471-2180-12-1 pmid: 3292460
[31] Howden B P, Beaume M, Harrison P F , et al. Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Antimicrob Agents Chemother, 2013,57(8):3864-3874.
doi: 10.1128/AAC.00263-13
[32] Jeeves R E , Marriott A A N,Pullan S T,et al. Mycobacterium tuberculosis is resistant to isoniazid at a slow growth rate by single nucleotide polymorphisms in katG Codon Ser315. PLoS One, 2015,10(9):e0138253.
doi: 10.1371/journal.pone.0138253
[33] Molina-Santiago C, Daddaoua A, Gomez-Lozano M , et al. Differential transcriptional response to antibiotics by Pseudomonas putida DOT-T1E. Environmental Microbiology, 2015,17(9):3251-3262.
doi: 10.1111/emi.2015.17.issue-9
[34] Yao Y F, Zhao Y, Zhao G R . Artificial sRNAs silencing csrA to Optimize the production of L-tyrosine in Escherichia coli. China Biotechnology, 2013,33(8):60-65.
[35] An Z F, Li Y M, Yang Y K , et al. Overexpression of artificial sRNA anti-micA enhancing Escherichia coli viability and pullulanase production. Journal of Biology, 2017,34(1):16-22.
[1] 曾家伟,侯国锋,郑继平,杨诺,曾纪峰,郭桂英. CRISPR/Cas系统作为抗菌药的现状及展望 *[J]. 中国生物工程杂志, 2018, 38(11): 59-65.
[2] 戈家傲,刘畅,龚建刚,刘艳琴. 抗菌环肽的研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 76-83.
[3] 姚元锋, 赵莹, 赵广荣. 人工sRNAs沉默csrA基因以优化大肠杆菌生产L-酪氨酸[J]. 中国生物工程杂志, 2013, 33(8): 61-66.
[4] 朱宽鹏, 赵树进. 芪合酶基因Fm-STS在何首乌毛状根中的过量表达及dsRNA干扰[J]. 中国生物工程杂志, 2012, 32(08): 41-48.
[5] 袁青, 谭万忠, 黄振霖, 殷幼平, 王中康. 一种适合于马铃薯病毒ssRNA快速提取技术[J]. 中国生物工程杂志, 2004, 24(6): 103-106.
[6] 周勤华, 张毅. 细菌对氨基糖苷类抗生素产生抗性的机理及其控制策略[J]. 中国生物工程杂志, 2004, 24(11): 9-12.
[7] 陈颖, 朱明华. RNA干扰[J]. 中国生物工程杂志, 2003, 23(3): 39-43.
[8] 王重振, 钱利生. 细菌对喹诺酮类抗菌药的分子耐药机制[J]. 中国生物工程杂志, 2003, 23(12): 26-30.
[9] 刘春燕, 陈庆山, 梁秀瑞, 张立军, 李文滨. AmpliDet RNA技术[J]. 中国生物工程杂志, 2003, 23(12): 78-81.